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Abstract

We provide number of results concerning the quaternionic Monge-Ampère equation. This
is the type of partial differential equation which appears in the presence of the hyper-
hermitian structure. For domains in the affine space we solve the Dirichlet problem for
a continuous boundary data and the right hand side in Lp for p > 2. This generalizes
many previous results on that problem. We show that this assumption on p is optimal.
On compact hyperKähler with torsion manifolds we present the proof of the uniform a
priori estimate for this equation.
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Chapter 1

Dissertation description

1.1 Contents description

The subject of the thesis is the existence and regularity of solutions to the quaternionic
Monge-Ampère equation, in both the local and the global setting. It is a counterpart of
the real and complex PDEs playing the prominent roles in both analysis and geometry.
It is an equation with a new form of non-linearity appearing naturally in the presence
of certain geometric structure – the hyperhermitian one. All the presented results are
contained in the series of three papers [Sr18, KS20, Sr19], one of which is co-authored with
my supervisor. The research on this topic in the local setting was initiated by Alesker
[A03a] and independently by Harvey and Lawson [HL09c]. Afterwards it was realized
that the quaternionic Monge-Ampère operator plays a significant role in the geometry of
hyperKähler with torsion manifolds, the type of geometry appearing on target spaces of
certain σ−models in quantum mechanics, cf. [GP00]. This observation made Alesker and
Verbitsky pose the analogue of the Calabi conjecture for those space, cf. [AV10]. This in
turn can be reduced to solving the quaternionic Monge-Ampère equation on hyperKähler
with torsion manifolds.

We briefly summarize the results, which are contained in [Sr18, KS20], for the flat
case of Hn, where H denotes the field of quaternions. Let MAH denote the quaternionic
Monge-Ampère operator in that space. Our main result is Theorem 5.3.1 below. It gives
the existence and uniqueness of the solutions, in the weak distributional sense, to the
Dirichlet problem 

MAH(u) = f

u|∂D = φ

u ∈ QPSH(D) ∩ C0(D)

.

In the above D is sufficiently convex and smooth, φ is continuous and f ∈ Lp(D) for
p > 2.

This is the most general result concerning the existence of the continuous solutions
that is known. It generalizes the previous results due to Zhu [Z17] for the smooth data,
Alesker [A03b] and Harvey and Lawson [HL09c, HL20] for the continuous ones and Wan
[W20] for the densities f from Lp(D) for p ≥ 4. We show also that the bound for the
exponent p for which there exist the continuous solutions is optimal. This in turn shows
that Theorem 5.3.1 constitutes the analog of Alexandrov’s result for the real Monge-
Ampère equation, where p ≥ 1, and Ko lodziej’s theorem for the complex Monge-Ampère
equations, where p > 1.
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The proof of Theorem 5.3.1 is based on the local C0 estimate for the quaternionic
Monge-Ampère equation. This in turn relies on the crucial result – the inequality be-
tween the capacity, naturally associated with the quaternionic Monge-Ampère operator,
and the Lebesgue measure. The proof here is completely different from its complex ana-
logue. First we compare the complex and quaternionic Monge-Ampère operators. This
idea for the pair of complex and real Monge-Ampère operators is due to Cheng and Yau.
Afterward we use a trick from [DK14] by noting that the class of functions on which
the equation is elliptic contains in particular the plurisubharmonic functions. Finally we
apply the Ko lodziej’s C0 estimate for the complex Monge-Ampère equation. To make
this as simple as possible, the proof of the C0 estimate we give is not the repetition of
the Ko lodziej’s proof in the complex case yet it crucially uses this result. It is not known
whether one can obtain the C0 estimate for the quaternionic Monge-Ampère equation
without using this result.

The regularity of the solutions from Theorem 5.3.1 is given in Theorem 6.5, this is
the contents of [KS20]. We show that if the boundary condition is of the class C1,1 then
the solution has to be of the class C0,α with the bound on α in terms of p and n. The
assumptions in this result are quite weak though as we require the density to be bounded
near the boundary of the domain.

On compact HKT manifolds the quaternionic Monge-Ampère equation appears nat-
urally. It encodes the possibility of obtaining any section of the canonical bundle of a
hypercomplex manifold from a hyperKähler with torsion metric, cf. [AV10]. Those met-
rics generalize the well know hyperKähler metrics. The troubles with solving the equation
in the global case rely on obtaining the a priori estimates at least up to the order C2,α.
Partial progress was obtained in [AV10, AS13, A13]. So far the only estimate known in the
general case, what we discuss in detail in Part III, is the uniform bound. It was obtained
by Alesker and Shelukhin in [AS17]. We present, in our opinion, simpler proof of this
result which appeared in [Sr19]. What is more important we improve the dependence of
the estimate on the initial data, it now depends only on the Lp norm of the right hand side
for a suitable p and the geometric quantities. This result is an analog of Yau’s estimate
on Kähler manifolds and Tosatti and Weinkove’s estimate on hermitian manifolds for the
complex Monge-Ampère equation.

The idea of the proof is as follows. We apply the Sobolev inequality for the solution.
This requires the L2 bound on the gradient of the solution, obtaining which is the main
challenge. In order to accomplish a weaker estimate, dependent on the solution, we dif-
ferentiate the equation and extract this weaker bound. This is done in a rather lengthy
process of obtaining an iterative bound on quantities appearing due to the mentioned dif-
ferentiation, see Chapter 8. As it turns out this allows us to obtain the desired C0 bound
after applying the Moser iteration method and some key ideas from [TW10a, TW10b].
The whole proof is strongly motivated by the latter paper.

The described results enrich the research on the fairly general class of PDEs and the
associated pluripotential theory initiated by the papers [HL09a, HL09b, HL09c]. In the
global case, the last two decades witnessed tremendous advances in geometric analysis
on hermitian manifolds. The particular example are the Calabi-Yau type theorems for
different classes of hermitian metrics [TW10b, GL10, SzTW17, TW17]. As we discuss in
Chapter 7 the quaternionic Monge-Ampère equation on hyperKähler with torsion mani-
folds fits in that setting.
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1.2 Dissertation organization

The organization of the text is as follows. In the next three chapters all the preliminaries
are presented. Those are grouped into, receptively, completely elementary results from
quaternionic linear algebra, geometric analysis on hermitian manifolds and pluripotential
theory associated to the quaternionic Monge-Ampère operator. No claim on the originality
is made there except for the contents of Section 4.6. The results described above for the
Dirichlet problem are presented in Part II while those for the compact HKT manifolds in
Part III. We tried to organize the thesis so that, in case of need, one can read those two
parts separately. For reading Part II one needs Chapter 2, Chapter 4 as well as Section
3.3.2 from Chapter 3. For reading Part III Chapter 2 and Chapter 3 are required.
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Chapter 2

Quaternionic linear algebra

This short chapter is meant to be a completely elementary introduction to the quaternionic
linear algebra serving mostly the purpose of fixing the notation. All of the presented
material is well known except, maybe, the Moore determinant which will be crucial for us
later when defining the quaternionic Monge-Ampère operator. We do not always know the
references containing proofs of the results as we present them, e.g. the relation between
Pfaffian and Moore determinant, that is why we do not provide them for each result but we
claim no originality. References for the quaternionic linear algebra that one can consult,
in case of need, are [Su79, Zh97], especially the latter one. For hyperhermitian linear
algebra the introductory section of [A03a] is probably the most adequate. We learned
about the relation between Pfaffian and Moore determinant from [Dy70, Dy72]. For the
discussion of determinants of quaternionic matrices we refer to [As96].

2.1 Quaternions

In this work we will face three number fields (and the corresponding geometries). These
of real numbers - R, complex ones - C and quaternions (formally not being a field of
numbers) - H. The last one is a skew-field, i.e. a ring satisfying all the axioms of the field
except commutativity of multiplication, which will be denoted by

H = {x0 + x1i + x2j + x3k | x0, x1, x2, x3 ∈ R}

where i2 = j2 = k2 = −1 and ijk = −1. The addition and multiplication being defined in
the obvious way. For a quaternion

q = t+ xi + yj + zk

we define its conjugate
q̄ = t− xi− yj− zk.

One can easily check that
qq̄ = q̄q = t2 + x2 + y2 + z2

and
qp = p̄q̄

for any q, p ∈ H. This conjugation agrees with the complex conjugation for C embedded
into H as described below.

The following embeddings of rings will be used
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R 3 x 7−→ x+ 0i ∈ C,
C 3 x+ yi 7−→ x+ yi + 0j + 0k ∈ H.

With this identification one should remember that zj = jz̄ for any complex z embedded
in the mentioned way into H.

We will deal with Hn considered as a right H vector space, formally a module over H
but we will never use this formality. In particular H acts on itself from the right. In case
of a vector space over a number field K(= R,C) one also has to specify the side for the
scalar action, this is usually the left action but in case of a field it does not matter due to
the commutativity of multiplication. Taking that into an account we will treat real and
complex vector spaces simultaneously as two sided. In case of quaternions we prefer to
act from the right, and this is at least as common approach as the left one, in order to be
able to identify a quaternionic matrix with an H linear mapping given by a multiplication
of a vector in Hn from the left by this matrix.

As mentioned above, for a square quaternionic matrix

M = (mij)i,j=1,...,n

we have the associated H linear map

Hn 3 q = (q0, ..., qn−1) 7−→Mq = (m1jqj, ...,mnjqj) ∈ Hn .

Remark 2.1.1. In the whole text we use Einstein summation convention.

This is indeed H linear since
M(qp) = (M(q)) p

for any q ∈ Hn and p ∈ H. We would have a problem if we had chosen Hn to be the left
quaternionic vector space since then there would be no reason to have

M(pq) = pM(q)

i.e. p would generally not commute with the entries of M . In our situation it may not, yet
we still obtain H linearity. This correspondence between matrices and H linear mappings
of Hn shows that left and right matrix inverses are the same. Consequently it makes sense
to think about the group Gln(H) of invertible quaternionic matrices.

Let M(n,H) be the set of all square quaternionic matrices of size n and suppose

q = (q0, ..., qn−1) ∈ Hn

is an eigenvector for an eigenvalue λ ∈ H of M ∈M(n,H), i.e.

M(q) = qλ.

From H linearity of M it follows that for any p ∈ H∗ (= H \ {0}) one has

M(qp) = M(q)p = qλp = qpp−1λp.

This shows also that any quaternion conjugate to λ, i.e. of the form

pλp−1 for p ∈ H∗,

11
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is an eigenvalue with an eigenvector quaternion proportional to q. Thus there is a sense
to talk only about the conjugacy classes of eigenvalues for the quaternionic matrix, since
otherwise there would be infinitely many of them in a generic case, as explained below.

If we denote by
conj(p) = {qpq−1 | q ∈ H∗}

the conjugacy class of a quaternion p then |conj(p)| = 1 if and only if p ∈ R as an
easy exercise shows, cf. [Zh97]. In other case conj(p) is infinite but contains exactly two
mutually conjugate purely complex elements, i.e. there is λ ∈ C such that λ, λ̄ ∈ conj(p)
and no other complex number belongs to conj(p), cf. [Zh97]. Here we mean the usual
embedding of C into H as above, we will not repeat this anymore. This also shows that
there are at most n conjugacy classes of eigenvalues for M ∈M(n,H). This is so because
the mutually conjugate complex representatives are then eigenvalues for a complex square
matrix of size 2n corresponding to a C linear mapping of Hn, treated as the complex vector
space, induced by M . We will not use this result in this generality but it will be discussed
in more details in the one of the following sections.

2.2 Hyperhermitian linear algebra

Let us restrict to the class of the so called hyperhermitian matrices, i.e. those belonging
to

Herm(H, n) = {M ∈M(n,H) | : M = M∗}

where
M∗ = (M̄)T = MT .

One should be careful as not all the operations known from the complex case commute,
for example transposition and inverting. The following definition is similar to the one in
the complex case.

Definition 2.2.1. A map h : Hn ×Hn −→ H is called a hyperhermitian form if

� h(q + q′, p) = h(q, p) + h(q′, p) for q, q′, p ∈ Hn,

� h(p, qλ) = h(p, q)λ for p, q ∈ Hn and λ ∈ H,

� h(q, p) = h(p, q) for p, q ∈ Hn.

We say that h is positive (non-negative) if h(q, q) > 0 (h(q, q) ≥ 0) for any q ∈ Hn \ {0}.

As we see in the proposition below, hyperhermitian matrices are precisely the matrices
defining hyperhermitian forms in canonical basis of Hn. There are far going analogies with
the complex case, some of them are listed in the remark below.

Proposition 2.2.2. The following map

Inn : Herm(H, n) −→ {h | h is a hyperhermitian form on Hn}

given by

Inn(M) = {h(q, p) = q̄TMp = q̄imijpj}

is a bijection.

12
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Remark 2.2.3.

� For any C ∈ M(n,H) and M ∈ Herm(H, n) the matrix C∗MC is hyperhermitian.
If in addition C ∈ Gln(H) then the matrix C∗MC is the matrix of a hyperhermitian
form h, defined by M , in a new basis. In this situation C is the transition matrix
from the canonical basis to that new basis.

� One can always find an orthonormal basis of Hn for M ∈ Herm(H, n) in which M
is real diagonal, i.e. for any M ∈ Herm(H, n) there is

P ∈ Sp(n) = {A ∈ Gln(H) | : AA∗ = idn} = {A ∈ Gln(H) | : A∗(q̄ipi)A = q̄ipi}

such that P ∗MP = D where D is real diagonal.

The last description of Sp(n) tells us that this is a group of matrices preserving the
standard quaternionic hyperhermitian product qipi.

� It follows that the (classes of) eigenvalues of M are all real. This will be discussed
in more details in the next section.

2.3 Determinants and canonical embeddings of ma-

trices

The purpose of this section is to remind some embeddings of the space of complex matrices
into real ones and to extend this notion to the pair of quaternionic and complex matrices.
This is related to the problem of defining a determinant operator for elements ofM(n,H).
We follow the notation of [As96] closely. Let M(n,R) and M(n,C) be the sets of real
and complex square matrices of size n.

One can identify C and R2, via an isomorphism of real vector spaces, in a standard
way

φ1 : C 3 x+ yi 7−→ (x, y) ∈ R2.

This isomorphism of real vector spaces applied coordinatewise gives rise to the following
isomorphism

φn : Cn 3 (x0 + y0i, ..., xn−1 + yn−1i) 7−→ (x0, ..., xn−1, y0, ..., yn−1) ∈ R2n. (I.2.0)

Any
M = A+ iB ∈M(n,C)

defines a C linear, so in particular R linear, map of Cn consequently also an R linear map
of R2n - via an isomorphism φn. This induced map is given explicitly by

φn ◦M ◦ φ−1
n .

Lemma 2.3.1. The matrix, say Φn(M), of this R linear map of R2n, in the standard
basis is given explicitly by

Φn(A+ iB) =

(
A −B
B A

)
. (I.2.1)

Proof. Take ej ∈ R2n the j’th vector from the canonical basis. Note that

13
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φ−1
n (ej) = ẽj for 0 ≤ j ≤ n− 1,

φ−1
n (ej) = iẽj−n for n ≤ j ≤ 2n− 1,

where ẽj is the canonical basis of Cn.
For 0 ≤ j ≤ n− 1 we see that φ−1

n (ej) is mapped by M to the j’th column of M which
is j’th column of A plus i times the j’th column of B. Taking φn of this sum gives the j’th
column of Φn(M). For other j’s the reasoning is similar.

In this way we have obtained a monomorphism of real algebras

Φn :M(n,C) −→M(2n,R).

Lemma 2.3.2. The image of Φn is

Φn(M(n,C)) = {N ∈M(2n,R) |NIn = InN}

where In = Φn(iidn) and idn is the identity matrix of size n.

Remark 2.3.3. The notation from this lemma is fixed for the whole text, i.e. In will
never denote an identity matrix and idn always denotes an identity matrix of size n.

Proof. Note that Cn is isomorphic, via φn, with R2n treated as a complex vector space,
with multiplication by i given by the map induced by the matrix I. Then N ∈M(2n,R)
corresponds to a C linear mapping of this complex vector space if and only if it commutes
with multiplication by i in R2n.

Proposition 2.3.4. For any M ∈M(n,C)

| detM |2 = det Φn(M).

Proof. By adding suitable raws and columns one can see that

det

(
A −B
B A

)
= det

(
A+ iB i(A+ iB)
B A

)
= det

(
A+ iB 0
B A− iB

)

= det

(
M 0
B M

)
= detM · detM = detM · detM = | detM |2.

This result has a more precise form for a special type of matrices. This reasoning
will give us an essential insight into how to define the determinant for some quaternionic
matrices – as we will see in the next paragraph. Suppose

M = A+ iB ∈ Herm(C, n),

i.e.
M

T
= M.

This means that
AT = A,BT = −B.

Consequently A ∈ Herm(R, n) and B is skew-symmetric. This allows us to note the
following.

14
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Lemma 2.3.5. For M = A+ iB ∈ Herm(C, n) the matrix

Φn(M)

is symmetric while
InΦn(M)

is skew-symmetric.

Proof. We show only the second observation, note that

InΦn(M) = Φn(iM) = Φn(−B + iA) =

(
−B −A
A −B

)
.

Now from the properties of A and B it follows that

(InΦn(M))T =

(
−B −A
A −B

)T
=

(
B A
−A B

)
= −InΦn(M).

Another important fact is the following result about the determinant of a skew-
symmetric matrices. As far as we know it is due to Cayley, cf. [C1847]. We state it
in modern language.

Theorem 2.3.6 (Cayley). There exists a polynomial Pf , with real coefficients, of degree
n on the space of skew-symmetric complex matrices of size 2n such that

det = Pf 2

as polynomials on this space.

The polynomial Pf from the theorem above, called Pfaffian, is defined up to the
sign. From the reason which will be clear when defining the quaternionic Monge-Ampère
operator in terms of product of currents we make the following choice.

Definition 2.3.7. For a skew-symmetric matrix

M = (mij)i,j=1,...,2n ∈M(2n,C)

we define the Pfaffian of M as

Pf(M)e1 ∧ ... ∧ e2n =
1

n!

(∑
i<j

mijei ∧ ej

)n

where ei is the canonical basis of C2n and the power in the exponent means exterior power
- which is the convention in the whole text for the exterior power of exterior forms.

As det and Pf 2 are homogeneous polynomials of degree n the, non instructive, proof
of Theorem 2.3.6 reduces to checking the equality on sufficiently many matrices of one’s
choosing. Having all of this settled the announced improvement of Proposition 2.3.4 is as
follows.

15
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Proposition 2.3.8. For any M ∈ Herm(C, n)

detM = Pf(In) · Pf (InΦn(M))

in particular
(detM)2 = (Pf (InΦn(M)))2 .

Remark 2.3.9. The proof of the first formula is by showing equality of homogeneous
polynomials of degree n on Herm(C, n), like in the case of Theorem 2.3.6. The second
formula follows. We need the normalization by Pf(In) due to the fact that with the
Definition 2.3.7 of Pfaffian as above one should convert n × n hermitian matrices into
n× n matrices of 2× 2 blocks rather than 2× 2 matrices of n× n blocks but the latter is
more convenient for latex typesetting.

Let us now turn to the quaternionic case. We try to repeat the story for H with the
isomorphism of (right) complex vector spaces

ψ1 : H 3 z0 + jz1 7−→ (z0, z1) ∈ C2

where, for
q0 := q = x0 + x1i + x2j + x3k,

we put
q0 = x0 + x1i + j(x2 − x3i) := z0 + jz1.

It extends to

ψn : Hn 3 (z0 + jz1, ..., z2n−2 + jz2n−1) 7−→ (z0, ..., z2n−2, z1, ..., z2n−1) ∈ C2n.

This is one of the two natural identifications, suited for considering right quaternionic
vector spaces. This time to an H linear mapping of Hn represented by

M = A+ jB,

for A,B ∈M(n,C), we associate a mapping of C2n. It is defined formally as

ψ1 ◦M ◦ ψ−1
1 ,

with the matrix in standard basis

Ψn(A+ jB).

One obtains the following.

Lemma 2.3.10. For any M = A+ jB one has

Ψn(A+ jB) =

(
A −B̄
B Ā

)
. (I.2.2)

The map
ψ :M(n,H) −→M(2n,C)

is a monomorphism of complex algebras.

Proof. Reasoning is just an adjustment of the previous one in real-complex case.
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Note that j acting on Hn, as we agreed from the right, defines a mapping of C2n given
by

φn ◦ j ◦ φ−1
n : C2n 3 (z0, ..., z2n−2, z1, ..., z2n−1) 7−→ (−z̄1, ...,−z̄2n−1, z̄0, ..., z̄2n−2) ∈ C2n.

As it is easy to see, this map equals to ¯◦ In and is complex anti-linear.

With multiplication by j defined by the map ¯◦ In and by k given by i ◦ j we obtain
that the complex isomorphism ψn is an H linear isomorphism between Hn and C2n for
C2n treated as a right H vector space with an action of H as just described. We point out
that in the above definition of multiplication by k give a vector in C2n one fist multiplies
by i and then applies the endomorphism ¯◦ In. This allows us to prove the following.

Lemma 2.3.11. The image of Ψn is

Ψn(M(n,H)) = {N ∈M(2n,C) |NIn = InN}.

Proof. One sees that N ∈ M(2n,C) belongs to ψ(M(n,H)) if and only if it commutes
with the endomorphism defining j multiplication in C2n, i.e.

N ∈ ψ(M(n,H))⇔ N ◦¯◦ In =¯◦ In ◦N ⇔ ¯◦N ◦¯◦ In = In ◦N ⇔ N̄In = InN.

In particular, from the lemma above,

det Ψn(M) ∈ R≥0

for M ∈ M(n,H). This is because Ψn(M) is similar to its conjugate and thus complex
eigenvalues of this matrix occur in pairs, counting multiplicity, with their conjugates.
Coming finally to the problem of defining determinant for a quaternionic matrices let us
firs note that the usual formula does not make sense at first glance due to the commuta-
tivity of multiplication. For example

0 = k · 1− ij = ” det ”

(
1 i
j k

)
6= 2k = 1 · k− ji = ” det ”

(
1 i
j k

)
.

Actually, there is no function on M(n,H) satisfying all the basic properties of det on
M(n,C), cf. [As96]. One try is to define

detM = det Ψn(M)

for M ∈ M(n,H) but this is, among other features, always non-negative. This is called
Study determinant of M , cf. [As96]. Another try is the so called Dieudonné determinant
which turns out to be the square root of Study determinant, cf. [As96]. Both this
approaches are useless for the geometric applications as they do not capture the notion
of positivity of a hermitian matrix depending on the sign of the eigenvalues. For this
purpose we restrict ourself in the next section to the hyperhermitian matrices.
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2.4 Moore determinant of hyperhermitian matrix

We are going to define and discuss the properties of the so called Moore determinant,
cf. [M22], of the hyperhermitian matrix. We take the approach via the Pfaffian of an
associated complex matrices as done for example in [Dy70, Dy72]. Alternative approach
is in [A03a]. For this purpose we first note the following.

Lemma 2.4.1. For
M = A+ jB ∈ Herm(H, n),

where A,B ∈M(n,C), the matrix
Ψn(M)

is hermitian. In turn, the matrix
InΨn(M)

is skew-symmetric.

Proof. It is easy to see that from

A+ jB ∈ Herm(H, n)

it follows
A+ jB = (A+ jB)

T
= A

T
+ jBT = A+B

T
j̄ = A

T − jB,

i.e.
A
T

= A,BT = −B.

The statements follow from that easily, by a direct computation due to the formula I.2.2.

Having this we make the definition of the Moore determinant as follows.

Definition 2.4.2. For M ∈ Herm(H, n) we define the Moore determinant of M , still
denoted by detM , as

detM = Pf(In)Pf(InΨn(M)). (I.2.3)

We need the following proposition in order to show that we make no confusion by
using det symbol for the Moore determinant.

Proposition 2.4.3. For A ∈ Herm(C, n) its Moore determinant coincides with the usual
determinant.

Proof. For A ∈ Herm(C, n) we find that

InΨn(A) =

(
0 −A
A 0

)
.

We have that the Moore determinant of A times the exterior product

e1 ∧ ... ∧ e2n,

for ei being a canonical basis of C2n, is

Pf(In)Pf (InΨn(A)) e1 ∧ ... ∧ e2n.
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Due to Definition 2.3.7 we find that this multi-vector equals

Pf(In)
1

n!

( ∑
i,j=1,...,n

−aijei ∧ ej+n
)n

which equals to
Pf(In) det (−A)e1 ∧ e1+n ∧ ... ∧ en ∧ en+n,

where det means the usual determinant. As A is hermitian the last object equals to

Pf(In)(detA)(−1)ne1 ∧ e1+n ∧ ... ∧ en ∧ en+n.

It is now enough to notice that this equals to

(detA)e1 ∧ ... ∧ e2n

as we wanted. This is because due to Definition 2.3.7

Pf(In)e1 ∧ ... ∧ e2n =
1

n!
(−ei ∧ ei+n)n = (−1)ne1 ∧ e1+n ∧ ... ∧ en ∧ en+n

which together with Theorem 2.3.6 gives

e1 ∧ ... ∧ e2n = Pf(In)(−1)ne1 ∧ e1+n ∧ ... ∧ en ∧ en+n.

In the end let us recap on the eigenvalues of the quaternionic matrices as we promised
in Section 2.1. As we noted there is only sense to talk about the conjugacy class of the
eigenvalues of M ∈ M(n,H). Any complex eigenvalue of M is a complex eigenvalue of
Ψn(M), and vice versa. Since every conjugacy class of eigenvalues ofM contains a complex
element, sometimes even real, it corresponds to a pair of conjugated eigenvalues of Ψn(M),
in the real case to that real eigenvalue counted with multiplicity two, which are, counting
multiplicities (of pairs!), at most n. This shows there are at most n conjugacy classes of
eigenvalues of M or exactly n counting multiplicities (being by definition multiplicities of
pairs of eigenvalues of Ψn(M)).

Let us note that for M ∈ Herm(H, n) the induced mapping of C2n given by Ψn(M) is
hermitian. It implies that all the conjugacy classes of eigenvalues of M are real, otherwise
they contain purely complex element and thus give a purely complex eigenvalue of the
hermitian matrix Ψn(M). It shows that in the hyperhermitian case there are exactly n,
counting multiplicities, real eigenvalues of M being exactly the real eigenvalues of Ψn with
their multiplicities divided by two. Having this said we state the following theorem which
we will not need but it completes the picture. The proof can be found in [A03a]. A direct
proof would require noting that the Pfaffian is invariant under orthonormal change of the
basis.

Theorem 2.4.4. [A03a] For any M ∈ Herm(H, n) we have

detM = λ1 · ... · λn

where λi are eigenvalues of M listed with multiplicities, i.e.

λ1, λ1, ..., λn, λn

are eigenvalues of Ψn(M) listed with multiplicities.
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Chapter 3

Geometric Analysis

3.1 Hermitian geometry

This section serves mostly the purpose of collecting definitions and well known facts
about differential and complex geometry. The conventions we use are fixed here as well,
and this is important as some of them are against most commonly used! More than
sufficient reference for the complex geometry is the introductory chapter of [H05]. The
complementary source is [D12] as it takes more analytic point of view in comparison with
the former one. For general differential geometry we refer to [Ta11] or the classic [KN63,
KN69]. For the extended treatment of G-structures we refer to [Kob72, St83, BG08].

Let TM denote a tangent bundle of a real smooth manifold M of dimension 2n which
is always assumed to be connected and compact in this text. Let endomorphism fields,
i.e. (1, 1) tensor fields being by definition sections of

End(M) := T ∗M ⊗ TM,

act on TM from the right.

Definition 3.1.1. An endomorphism field I on M is called an almost complex structure
provided

I2 := I ◦ I = −idTM .

The pair (M, I) is called an almost complex manifold. When I is integrable, in the formal
sense of the vanishing of the Nijenhuis tensor [I, I] associated to it, we call (M, I) a
complex manifold. This is equivalent, due to the Newlander-Nirenberg theorem, to the
induced Gln(C) structure being integrable in the strong sense i.e. to the existence of an
atlas with transition functions being holomorphic.

By definition,

TCM := C⊗ TM

is called the complexified tangent bundle. The following symbols for vector bundles will
be used.

Remark 3.1.2. We often do not distinguish between the vector bundle and the space
of its, smooth if not stated otherwise, sections. This convention generally do not apply
for vector fields i.e. sections of TM where we use the symbol Γ(TM) for that space of
sections.
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Λk(M) := Λk(T ∗M)

Λk
C(M) := Λk

(
(TCM)∗

) ∼= C⊗ Λk(M)

Λp,q(M) := Λp,q
I (M) ⊂ Λk

C(M)

The last one denotes the bundle of complex valued forms of Hodge bidegree (p, q) with
respect to the complex structure I. Let us elaborate on the last one. By definition

I : TM → TM

but it also extends C linearly to

I : TCM → TCM,

without changing the symbol denoting it. Finally, we are about to describe the action

I : (TCM)∗ → (TCM)∗.

In general there are two conventions for that action, either

I(α)(X) = α(X ◦ I−1)

or

I(α)(X) = α(X ◦ I),

for any α ∈ T ∗M and X ∈ Γ(TM). The first one has a notational disadvantage. If one
takes, as always, T 1,0M to be i eigenspace of I acting on TCM then in local holomorphic
coordinates for I we have T 1,0M = span{∂zi} yet as one can easily check with the first
convention for the I action on (TCM)∗ we have I(dzi) = −idzi. That is the reason we
choose the second convention because in this case (∂zi)I = i∂zi as well as I(dzi) = idzi
i.e. T 1,0M and (T 1,0M)∗ are both i eigenspaces for I acting on appropriate spaces. This
action can be extended to Λk

C(M) by

I(α) = α(·I, ..., ·I)

for any α ∈ Λk
C(M). We will see more important reasons for choosing the latter convention

as well as having endomorphism fields acting from the right on vector and from the left
on covers in the next section.

Using the Hodge decomposition and the integrability of the complex structure we
obtain that on a complex manifold (M, I) the exterior differential decomposes into

d = ∂ + ∂,

where the last two operators are called the Dolbeault operators and satisfy

∂ : Λp,q(M) −→ Λp+1,q(M),

∂ : Λp,q(M) −→ Λp,q+1(M).
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Remark 3.1.3. Please be warned that integrability of the complex structure is essential
for this decomposition as on general almost complex manifold all we can deduce is that

d =
∑
k,l

Πk+2,l−1 ◦ d ◦ Πk,l + Πk+1,l ◦ d ◦ Πk,l + Πk,l+1 ◦ d ◦ Πk,l + Πk−1,l+2 ◦ d ◦ Πk,l,

where
Πp,q : ⊕nk,l=0Λk,l(M) 7−→ Λp,g(M)

is the natural projection. The summands of this decomposition are usually denoted by

Θ :=
∑
k,l

Πk+2,l−1 ◦ d ◦ Πk,l,

∂ :=
∑
k,l

Πk+1,l ◦ d ◦ Πk,l,

∂ :=
∑
k,l

Πk,l+1 ◦ d ◦ Πk,l,

Θ̄ :=
∑
k,l

Πk−1,l+2 ◦ d ◦ Πk,l.

Vanishing of the Nijenhuis tensor of I is equivalent to

Θ = Θ̄ = 0.

We also introduce the twisted exterior differential

dc := dcI = I−1 ◦ d ◦ I.

It is elementary to check that
dc = i(∂ − ∂)

and
ddc + dcd = 0,

the latter due to integrability of I.

Definition 3.1.4. A Riemannian metric g on a complex manifold (M, I) is called her-
mitian provided

g = g(·I, ·I).

In that case we call (M, I, g) a hermitian manifold. As is standard to do, we associate to
the hermitian metric g the so called hermitian form

ωI := ω = g(·I, ·).

It is easy to see that ω ∈ Λ1,1(M).

Remark 3.1.5. Every complex manifold M admits a compatible hermitian metric e.g.

1

2

(
g + g(·I, ·I)

)
for any Riemannian metric g on M .
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3.1.1 Hermitian connections and curvature

In this section we introduce some of the canonical connections on a hermitian manifold
(M, I, g) and the associated notions of curvature in relation with the Chern classes. Re-
garding the canonical connections, they were discussed thoroughly by Gauduchon in the
paper [G97a] which have become a standard reference.

Definition 3.1.6. A connection ∇ on a hermitian manifold (M, I, g) is called hermitian
provided

∇I = ∇g = 0.

Those connections in general do posses torsion since otherwise the manifold is Kähler,
i.e. dω = 0, and the connection is the Levi-Civita one. In the affine space of all the hermi-
tian connections Gauduchon has distinguished the affine line of the canonical connections
denoted by ∇t for t ∈ R. Since in our considerations we will encounter only two of them
we do not discuss the general context of canonical connections instead exploiting the fact
that those two can be nicely characterized.

Proposition 3.1.7. [G97a] On a hermitian manifold (M, I, g) there is a unique hermitian
connection, denoted by ∇Ch, which will be called the Chern connection characterized by
the fact that

∇0,1 = ∂.

In the above, and here only, ∂ denotes the Cauchy-Riemann operator of the holo-
morphic bundle T 1,0M , cf. [D12, H05]. The (0, 1) part of the connection, cf. [D12], is
obtained by projecting the (TCM)∗ component of ∇ using the Hodge decomposition on
(TCM)∗. Precisely any connection

∇ : Γ(TCM) −→ Γ
(
(TCM)∗ ⊗ TCM

)
can be decomposed as

∇ = ∇1,0 +∇0,1

for
∇1,0 : Γ(TCM) −→ Γ

(
(T 1,0M)∗ ⊗ TCM

)
,

∇0,1 : Γ(TCM) −→ Γ
(
(T 0,1M)∗ ⊗ TCM

)
.

For the further discussion it is important that, as ∇Ch is a hermitian connection, after
tracing the endomorphism part of its curvature tensor R∇

Ch
we obtain the representative

of the (scaled) first Chern class in H2(M,R). We call this representative the Chern-
Ricci curvature of g, or ω, and denote it by Ricc(∇Ch). Due to the properties of this
connection – vanishing of the (1, 1) component of the torsion, Ricc(∇Ch) is of the Hodge
type (1, 1). Consequently it represents the first Chern class also in the so called Bott-
Chern cohomology group H1,1

BC(M,R), cf. [H05]. Even more importantly the following
formula holds

Ricc(∇ch) = tr(FCh) = −i∂∂log
(
det(gij̄)i,j

)
where gij̄ are the coefficients of g in any holomorphic chart, cf. [TW10a, TW10b]. This
elementary property has serious consequences for what one has to do in order to find a
metric with a given representative, say ρ, of the first Bott-Chern class cBC1 (M, I) as its
Chern-Ricci curvature. Namely, suppose that ρ is of the form

ρ = −i∂∂log
(
det(gij̄)i,j

)
− i∂∂F.

23

23:6961319478



Any element of cBC1 (M) is of this form for some smooth F if we fixed a reference metric
ω. The fact that the metric ω̃ has the Chern-Ricci curvature equal to ρ is equivalent to

−i∂∂log
(
det(g̃ij)i,j

)
= −i∂∂log

(
det(gij̄)i,j

)
− i∂∂F.

It is elementary to observe that this is equivalent to(
det(g̃ij)i,j

)
= eF+b

(
det(gij̄)i,j

)
for some b ∈ R. This in turn means, by going from the chart expression to the global one,
that

ω̃n = eF+bωn.

Thus prescribing the Chern-Ricci curvature for the hermitian metric is exactly the same as
prescribing the volume form for it modulo a constant. It is recently an active area of study
for which types of hermitian metrics it is always possible to prescribe any representative
of cBC1 (M, I) as the Chern-Ricci curvature of the metric of that given type. As one may
imagine the root of this subject is the famous Calabi conjecture which translated to the
solvability of the complex Monge-Ampère equation was established originally by Yau,
with many later simplifications, in [Y78]. Some of the references for this type of results
are [Ch87, TW10a, TW10b, GL10, FWW10, FLY12, P15, TW17, SzTW17, P19, TW19,
ChTW19]. In Chapter 7 we will make a link to this type of problems when discussing the
so called quaternionic Calabi conjecture posed by Alesker and Verbitsky in [AV10].

Passing to the second announced connection for now we limit ourselves to giving the
definition. We will discuss it more thoroughly in Chapter 7.

Proposition 3.1.8. [G97a] On a hermitian manifold (M, I, g) there is a unique hermitian
connection, denoted by ∇B, which will be called the Bismut connection characterized by
the fact that its torsion tensor, after lowering the upper index by g, is a three form.

Remark 3.1.9. This connection is named after Bismut, see [Bi89]. It was implicitly
considered already in [S86] since connections with skew torsion appear naturally in its
context. Because of the last fact some people insist on calling it the Strominger connection
but the former name became already accepted, cf. [G97a], that is why we stick to it.

3.2 Hyperhermitian geometry

3.2.1 Quaternionic geometries

In this section we introduce the concept of quaternionic geometric structure. Book refer-
ences for this are [Be87, J00, BG08] and the papers of Salamon [S86] or Alekseevsky and
Marchiafava [AM96]. The book of Boyer and Galicki contains the full list of historical
references on the subject.

Probably the most natural idea to define a quaternionic manifold would be to require
the existence of an atlas with transition functions having derivatives in GlnH ⊂ Gl4n(R)
i.e. as integrable in the strong sense Gln(H) structure. This leads to a rather restrictive
approach due to Proposition I from [So75] which states that functions with derivatives in
Gln(H) are in fact quaternionic affine transformations. This actually holds for any class
of functions being holomorphic with respect to two independent complex structures. In
order to broaden the class of quaternionic manifolds one can impose the following weaker
requirements, which are now standard definitions yet the terminology from 70’s and 80’s
may differ so the reader should be warned.
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Definition 3.2.1. Let M be a manifold of the real dimension 4n endowed with a triple
of complex structures I, J , K satisfying quaternion relations. The tuple (M, I, J,K) is
called a hypercomplex structure.

Definition 3.2.2. A manifold M of real dimension 4n bigger than 4 with a fixed, rank
3, subbundle Q ⊂ End(TM) such that

� locally, near any point of M , Q is spanned by a triple of almost complex structures
satisfying quaternion relations;

� there exists a torsion free connection ∇ such that ∇Q ⊂ Q

is called a quaternionic manifold.

Remark 3.2.3. In the sense of the above definitions the hypercomplex and quaternionic
structures are just 1 integrable Gln(H) and Gln(H)·Gl1(H) structures respectively. By def-
inition the latter group is (Gln(H)× Sp(1)) /{(idn, 1), (−idn,−1)}. For the hypercomplex
structures this follows from the theorem of Obata [Ob56]. When dropping the assumption
of integrability we obtain the almost hypercomplex and almost quaternionic structures.
This results in dropping the integrability condition for complex structures in Definition
3.2.1 and the second item in Definition 3.2.2. As we remarked earlier requiring the strong
integrability forces the hypercomplex manifold to be a special affine manifold, cf. [So75],
while the quaternionic one to be locally isomorphic to HPn, see Example 3.2.17, with the
transition functions being projective H linear transformations – elements of PGLn(H), cf.
[Ku78].

We will be interested only in hypercomplex manifolds. We remark that quaternionic
manifolds do not posses even a globally defined almost complex structure in general, cf.
[GMS11], so they rather belong to the realm of real geometry, though the so called twistor
space construction allows to study them via complex methods.

The announced reason for the chosen action of endomorphisms on T ∗M is as follows.
When considering a hypercomplex manifold (M, I, J,K) we obtain that

H ∼= {aidTM + bI + cJ + dK | a, b, c, d ∈ R} ⊂ End(M)

acts from the right on TM and from the left on T ∗M . The competitive convention for
the action of endomorphisms on T ∗M does not give an action of H on T ∗M at all, neither
right nor left.

Remark 3.2.4. Whenever on a hypercomplex manifold (M, I, J,K) it happens that we
do not specify with respect to which complex structure the Hodge bidegree is taken it is
with respect to I.

Let (M, I, J,K) be a hypercomplex manifold. We are going to introduce the analogue
of ∂ operator from the complex setting. Let us remind that we have the Dolbeault
operators ∂ := ∂I and ∂ := ∂I associated to the complex structure I on M . Following
Verbitsky, cf. [V02], we define the differential operator ∂J by

∂J := J−1 ◦ ∂ ◦ J. (I.3.1)

Lemma 3.2.5. The operator ∂J acts on the complex forms by

∂J : Λp,q
I (M)→ Λp+1,q

I (M).
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Proof. Since the operator ∂ acts by

∂ : Λp,q
I (M) −→ Λp,q+1

I (M)

it is enough to show that
J : Λp,q

I (M) −→ Λq,p
I (M)

because then

J−1 ◦ ∂ ◦ J : Λp,q
I (M)→ Λq,p

I (M)→ Λq,p+1
I (M)→ Λp+1,q

I (M).

For that goal it is enough to notice that

J : Λ1,0
I (M)→ Λ0,1

I (M),

J : Λ0,1
I (M)→ Λ1,0

I (M).

This is truly enough since each α ∈ Λp,q
I (M) is locally a sum of wedges of p elements from

Λ1,0
I (M) and q elements from Λ0,1

I (M).
The two claimed properties follow from noting that Λ1,0

I (M) is an i eigenspace for I
acting on TC∗M and that I and J anti-commute. Explicitly, for any α ∈ Λ1,0

I (M) we have(
I(Jα)

)
(X) = (Jα)(XI) = α(XIJ) = −α(XJI) = −iα(XJ) = −i(Jα)(X)

so
Jα ∈ Λ0,1

I (M)

because the elements of Λ0,1
I (M) are characterized by

Iβ = −iβ.

Analogously we show the second claim.

We also introduce the operator ∂J defined formally by

∂J := J−1 ◦ ∂ ◦ J,

but as the operator J is real it is equal to

(∂J)

as well.
It was observed by Verbitsky, [V02, V07a], that the bicomplex(

Ap,q := Λp+q,0
I (M), ∂, ∂J

)
,

called by him the quaternionic Dolbeault bicomplex, constitutes an analogue of the Dol-
beault bicomplex (

Λp,q, ∂, ∂
)

from the complex case. More importantly he proved, [V07a], that it is isomorphic to
the Hodge decomposition of the so called Salamon complex [S86], introduced originally
in the broader context of quaternionic manifolds. It is elementary to check the following
properties of the operators ∂, ∂, ∂J and ∂J , proving in particular that

(
Λp+q,0
I (M), ∂, ∂J

)
is truly a bicomplex.
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Lemma 3.2.6. For a hypercomplex manifold (M, I, J,K) the following hold

∂0∂1 + ∂1∂0 = 0,

∂0 satisfies the Leibnitz rule,

for any ∂0, ∂1 ∈ {∂, ∂, ∂J , ∂J}.
Proof. We just would like to remark that checking the first property, which is the only
one that may cause troubles at all, is easier than proposed originally by Verbitsky in [V02]
for the particular pair of ∂ and ∂J . One can simply use the facts that

ddcJ + dcJd = 0, (*)

ddcK + dcKd = 0, (**)

what follows from the integrability of J and K as we have seen in the previous section.
Then rewriting d as ∂ + ∂ we obtain

d = ∂ + ∂,

dcI = i(∂ − ∂),

dcJ = J−1 ◦ (∂ + ∂) ◦ J = ∂J − ∂J ,
dcK = (IJ)−1 ◦ d ◦ (IJ) = J−1 ◦ (I−1 ◦ d ◦ I) ◦ J = J−1 ◦ dcI ◦ J = i(∂J − ∂J).

Comparing both sides in (*) and (**) and taking into an account the Hodge bidegrees
with respect to I gives the claim. More precisely (*) gives

∂∂J + ∂∂J + ∂∂J + ∂∂J + ∂J∂ + ∂J∂ + ∂J∂ + ∂J∂ = 0, (A)

while (**) gives

∂∂J − ∂∂J + ∂∂J − ∂∂J + ∂J∂ − ∂J∂ + ∂J∂ − ∂J∂ = 0. (B)

It turns out that
∂∂J + ∂J∂ = 0,

as it is the component of bidegree (2, 0) of the left hand side of (A),

∂∂J + ∂J∂ = 0,

as it is of bidegree (0, 2) of (A),

∂∂J + ∂∂J + ∂J∂ + ∂J∂ = 0, (C)

as it is of bidegree (1, 1) of (A),

−∂∂J + ∂∂J − ∂J∂ + ∂J∂ = 0, (D)

as it is of bidegree (1, 1) of (B). Adding and subtracting (C) and (D) we obtain

∂∂J + ∂J∂ = 0

and
∂∂J + ∂J∂ = 0.

The only two remaining identities

∂∂ + ∂∂ = 0,

∂J∂J + ∂J∂J = J−1 ◦ (∂∂ + ∂∂) ◦ J = 0

of course do hold.
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For the further use we would like to introduce also the analogue of the real forms in
the complex setting. This is done as follows and is based on the exposition in [V02, AV06].
As on any complexified space, we have the bar operator ? defined on complex forms on
M. It acts by

? : Λq,p
I (M)→ Λp,q

I (M).

Composing it with the J operator we obtain

J := ? ◦ J : Λp,q
I (M)→ Λp,q

I (M).

Note that ? and J commute since J is a real operator. Consequently

J 2 = (−1)p+qidΛp,qI (M).

This justifies the following.

Lemma 3.2.7. On the hypercomplex manifold (M, I, J,K), for any p and q such that
p+ q is even the operator J is an involution and consequently has only the eigenvalues 1
and −1.

Definition 3.2.8. In the situation from the lemma above we denote the 1 eigenspace of
J by

Λp,q
I,R(M) :=

{1

2

(
α + J (α)

) ∣∣∣ α ∈ Λp,q
I (M)

}
and call this a space of q-real (p, q) forms. We will be primarily interested in the case
when p = 2k and q = 0.

Proposition 3.2.9. [AV06] Let (M, I, J,K) be a hypercomplex manifold and f : M → R
a smooth real function, then

∂Jf = J−1∂f,

∂∂Jf ∈ Λ2,0
I,R(M).

Definition 3.2.10. When we specify a Riemannian metric g on a hypercomplex manifold
(M, I, J,K), hermitian with respect to I, J and K, what is equivalent to being hermitian
with respect to the whole sphere

S2
M := {aI + bJ + cK | a2 + b2 + c2 = 1}

of complex structures on M , then (M, I, J,K, g) is called a hyperhermitian manifold. For
a hyperhermitian (M, I, J,K, g) and any L ∈ S2

M we take the associated hermitian form
to be

ωL(X, Y ) = g(XL, Y )

for any X, Y ∈ Γ(TM). We define also the holomorphic symplectic form

Ω = ωJ − iωK

associated to g.

Remark 3.2.11. As we will see in the chapter on HKT metrics, Chapter 7, Ω will play
the role of ω in hermitian geometry and the name will become clear there as well. It is
elementary to check that Ω ∈ Λ2,0

I,R(M).
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Remark 3.2.12. As in the complex case, every hypercomplex manifold M admits a com-
patible hyperhermitian metric, e.g.

1

4

(
g + g(·I, ·I) + g(·J, ·J) + g(·K, ·K)

)
for any Riemannian metric g on M .

We are about to present a series of simple, yet instructive, examples of hypercomplex
manifolds.

Example 3.2.13. Consider M = Hn as the right H module. We take the map

µn : Hn −→ R4n

given by

µn

(
(qi)i=0,...,n−1

)
=
(

(x4i)i=0,...,n−1, (x4i+1)i=0,...,n−1, (x4i+2)i=0,...,n−1, (x4i+3)i=0,...,n−1

)
,

where
qi = x4i + x4i+1i + x4i+2j + x4i+3k,

for i ∈ {0, ..., n− 1}, to be a global real chart. By definition ∂xi for i ∈ {0, ..., 4n− 1} give
a trivialization of the bundle TM .

We check that i, j, k act on Hn, in this coordinates, by

(x4i + x4i+1i + x4i+2j + x4i+3k)i = −x4i+1 + x4ii + x4i+3j− x4i+2k,

(x4i + x4i+1i + x4i+2j + x4i+3k)j = −x4i+2 − x4i+3i + x4ij + x4i+1k,

(x4i + x4i+1i + x4i+2j + x4i+3k)k = −x4i+3 + y4i+2i− x4i+1j + x4ik.

This shows that the induced complex structures I, J , K are given in the frame {∂xi} by

(∂x4i)I = ∂x4i+1
, (∂x4i+2

)I = −∂x4i+3
,

(∂x4i)J = ∂x4i+2
, (∂x4i+1

)J = ∂x4i+3
,

(∂t4i)K = ∂x4i+3
, (∂x4i+1

)K = −∂x4i+2
.

In this setting the map, introduced in the first chapter,

φn : Hn 3 (qi)i=0,...,n−1 7−→ ((z2i)i=0,...,n−1, (z2i+1)i=0,...,n−1) ∈ C2n,

where
qi = z2i + jz2i+1,

for i ∈ {0, ..., n − 1}, is a global holomorphic chart for the complex structure I as an
isomorphism of complex vector spaces. The relations between real and complex coordinates
are

zj = x2j + (−1)jx2j+1i,

for j = 0, ..., 2n− 1. As an easy calculation shows

dz2i = dx4i + idx4i+1, dz2i+1 = dx4i+2 − idx4i+3,
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∂z2i =
1

2
(∂x4i − i∂x4i+1

), ∂z2i+1
=

1

2
(∂x4i+2

+ i∂x4i+3
).

The action of J in holomorphic coordinates for I is

(∂z2i)J = (
1

2
(∂x4i − i∂x4i+1

))J =
1

2
(∂x4i+2

− i∂x4i+3
) = ∂z2i+1

,

(∂z2i+1
)J = (

1

2
(∂x4i+2

+ i∂x4i+3
))J =

1

2
(−∂x4i − i∂x4i+1

) = −∂z2i ,

J(dz2i+1) = dz2i, J(dz2i) = −dz2i+1,

i.e.
(∂zj)J = (−1)j∂z

j+(−1)j
and J(dzj) = (−1)j+1dzj+(−1)j .

Take a standard, though sometimes differently normalized, Riemannian metric on Hn

g = dx4i ⊗ dx4i + dx4i+1 ⊗ dx4i+1 + dx4i+2 ⊗ dx4i+2 + dx4i+3 ⊗ dx4i+3.

We easily get the following expressions, in the introduced coordinates, for the introduced
quantities associated with this hyperhermitian structure

ωI = −dx4i+1 ⊗ dx4i + dx4i ⊗ dx4i+1 + dx4i+3 ⊗ dx4i+2 − dx4i+2 ⊗ dx4i+3

= dx4i ∧ dx4i+1 + dx4i+3 ∧ dx4i+2 =
i

2
(dz2i ∧ dz2i + dz2i+1 ∧ dz2i+1),

ωJ = dx4i ∧ dx4i+2 + dx4i+1 ∧ dx4i+3,

ωK = dx4i+2 ∧ dx4i+1 + dx4i ∧ dx4i+3,

Ω = ωJ − iωK = dx4i ∧ dx4i+2 + dx4i+1 ∧ dx4i+3 − idx4i+2 ∧ dx4i+1 − idx4i ∧ dx4i+3

= (dx4i + idx4i+1) ∧ (dx4i+2 − idx4i+3) = dz2i ∧ dz2i+1,

h = g − iωI = Ω(·, ·J) = dz2i ⊗ dz2i + dz2i+1 ⊗ dz2i+1.

The last formula holds on any hyperhermitian manifold in the sense that if in a local
holomorphic chart for I the metric is is given by

g = g11
ij̄ dz2i ⊗ dz2j + g12

ij̄ dz2i ⊗ dz2j+1 + g21
ij̄ dz2i+1 ⊗ dz2j + g22

ij̄ dz2i+1 ⊗ dz2j+1

+g11
īj dz2i ⊗ dz2j + g12

īj dz2i ⊗ dz2j+1 + g21
īj dz2i+1 ⊗ dz2j + g22

īj dz2i+1 ⊗ dz2j+1

then

Ω(·, ·J) = 2
(
g11
ij̄ dz2i ⊗ dz2j + g12

ij̄ dz2i ⊗ dz2j+1 + g21
ij̄ dz2i+1 ⊗ dz2j + g22

ij̄ dz2i+1 ⊗ dz2j+1

)
.

Though it is impossible to obtain a formula for Ω not involving J since in general
J does not act on I holomorphic and anti-holomorphic differentials as above in the flat
case of Hn, i.e. in general there are no quaternionic coordinates as we mentioned in the
beginning.

For a smooth function u : Hn → R we easily compute, for further reference,

∂Ju = (J−1∂J)u = J−1(∂u) = J−1(
2n−1∑
j=0

∂zjudzj)
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= J−1(
2n−1∑
j=0

∂z
j+(−1)j

udzj+(−1)j) =
2n−1∑
j=0

∂z
j+(−1)j

u(−1)j+1dzj,

∂∂Ju =
∑
i,j

(
(−1)j+1∂zi∂zj+(−1)j

u
)
dzi ∧ dzj

=
∑
i<j

(
(−1)j+1∂zi∂zj+(−1)j

u− (−1)i+1∂zj∂zi+(−1)i
u
)
dzi ∧ dzj.

Especially

∂∂J

(
1

2

2n−1∑
k=0

zkzk

)
=

n−1∑
k=0

dz2k ∧ dz2k+1 = Ω.

Example 3.2.14. Take H as a hyperhermitian manifold from the previous example. Since
the vector fields ∂xi are invariant with respect to the additive action of H on itself the hyper-
complex structure as well as metric descend to the quotient of H by Z4 ⊂ H. Topologically
this is simply a four torus which turns out to be a compact hyperhermitian manifold. The
difference is that this example is compact.

Example 3.2.15. For the next compact example take H∗ := H\{0} with the hypercomplex
structure from the first example and fix a quaternion q0 such that |q0| > 1. Then q0 gen-
erates a subgroup of diffeomorphisms of H∗ isomorphic to Z given by a left multiplication
by qk0 for k ∈ Z. Take the manifold being the quotient of H∗ by Z. It is compact since
arbitrarily big, in norm, quaternion can be divided by a power of q0 in order to obtain
something with the norm smaller than one. The complex structures I, J , K are invariant
for this actions since for L ∈ {i, j, k} we have

[qk0(t+ xi + yj + zk)]L = qk0 [(t+ xi + yj + zk)L]

or another words saying qk0 ∈ Gl1(H) for any k. This is an example of the so called
quaternionic Hopf manifold and the construction can be generalized to

(Hn)∗ := Hn+1 \ {0}.

It is interesting to know which complex Hopf manifolds admit a hypercomplex structure.
This was investigated by Kato in [Ka75, Ka80] an Boyer [B88].

Example 3.2.16. It is worth mentioning that H∗ is interesting even before taking the
quotient space since this is a Lie group with action given by quaternionic multiplication.
What is more, since reals commute with any quaternion we have

H∗ ∼= R∗ × S3 ∼= R∗ × SU(2)

and so its Lie algebra is
R× su(2).

Joyce provides hypercomplex structure for this Lie algebra in his famous paper [J92] which
descends to this group. Let us also note that topologically related example of

T 1 × SU(2) ∼= R∗ × SU(2)/Z

is another Lie group with this Lie algebra and as such it is also furnished with the hyper-
complex structure provided by Joyce.

31

31:8576283941



Example 3.2.17. This is a non-example. Consider Hn+1 \ {0} with the right action of
H∗ given by multiplication. The quotient space is denoted by

HPn

and called the quaternionic projective space. This does not admit even an almost complex
structure but as far as we know this is not an easy fact. For the case n = 1 this follows
from HP1 ∼= S4 and the latter does not posses an almost complex structure which is fairly
known fact as the only spheres admitting such structures are S2 and S6.

Example 3.2.18. Finally, we collect the references for the more complicated examples.
It was already proved by Boyer [B88] that in real dimension four there are not many
hypercomplex manifolds after all. They are either a four torus, a K3 surface i.e. a
two dimensional Calabi-Yau, or a quaternionic Hopf surface. There is a nice family of,
not necessarily homogeneous, examples due to Joyce [J92]. It was proven by him that
any compact Lie group after multiplying by T k, where k ∈ {1, 2, 3}, if necessary, admits
a hypercomplex structure. Joyce’s result is strongly motivated by an earlier construction
from [SSTVP88], which emerged in connection with providing examples of supersymmetric
sigma models. Joyce generalized it also to principal bundles. Non-homogeneous hypercom-
plex structures on Joyce’s homogeneous manifolds where provided also by Pedersen and
Poon [PP99]. Another construction, from [J91], allows to produce a lower dimensional
examples from a given hypercomplex manifold, this is the version of a standard quotient
construction known for different classes of geometric structures. The so called biquotient
construction performed in [J95] provides further examples. There is also a sequence of
examples due to Boyer et al. on Stiefel manifolds and on S1 fiber bundles over 3-Sasakian
manifolds [BGM94, BGM96, BGM98]. Examples of hypercomplex structures on the so
called nilmanifolds, i.e. the quotients of nilpotent groups endowed with invariant struc-
ture, were provided in [BDV09]. Further examples on fiber bundles obtained by the so
called twist construction were provided by Swann in [Sw10, Sw16]. For more references
to the examples one can consult [BG08].

3.2.2 Positivity on hypercomplex manifolds

We introduce positive forms, in the quaternionic sense, on the hypercomplex manifold
(M, I, J,K) – the notion of an essential importance for developing pluripotential theory
associated to the quaternionic Monge-Ampère operator in Hn, done in the next chapter,
and for performing a priori estimates in the last part of the text. We follow quite closely
the exposition of [AV06, V10a].

Let us start from a linear algebraic considerations. For that purpose we treat TxM as
a right H module, with H action given by Ix, Jx, Kx. Firstly, we would like to introduce
the canonical orientation on the real line

Λ2n,0
I,R (TxM).

Fix any H basis e1, ..., en of TxM . This gives an isomorphism of right H modules

G : TxM → Hn,

on which we use the coordinates introduced in Example 3.2.13. Consider the form

dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1 ∈ Λ2n,0
I,R (Hn),
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we take its pull back

G∗
(
dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1

)
∈ Λ2n,0

I,R (TxM).

Suppose we had chosen a different isomorphism

H : TxM → Hn,

i.e we have chosen a different H basis e′i of TxM . We would like to show that the two
induced forms differ by a positive constant.

Note that the transition map from ei to e′i is

H ◦G−1.

Since both pulled back forms belong to Λ2n,0
I they can be written using (complex) duals

e∗i , (eij)
∗ respectively e′∗i , (e′ij)

∗ as

G∗
(
dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1

)
= e∗0 ∧ (e0j)

∗ ∧ ... ∧ e∗n−1 ∧ (en−1j)
∗,

H∗
(
dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1

)
= e′∗0 ∧ (e′0j)

∗ ∧ ... ∧ e′∗n−1 ∧ (e′n−1j)
∗.

The transition matrix between those two complex bases is

ψ
(
H ◦G−1

)
as we have seen in Chapter 2. From all of these we see that the two forms differ by

det
(
ψ
(
H ◦G−1

))
which we have seen to be positive. We are ready to define an orientation on Λ2n,0

I,R (TxM).

Definition 3.2.19. Let (M, I, J,K) be a hypercomplex manifold. The canonical orienta-
tion in Λ2n,0

I,R (TxM) is defined by

F ∗(dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1)

for any H isomorphism

F : TxM → Hn.

We denote the closed positive half-line in Λ2n,0
I,R (TxM) by

Λ2n,0
I,R ≥0

(TxM)

and call its elements strongly positive.
The space of strongly positive elements in Λ2k,0

I,R (TxM), denoted by

SP 2k(TxM),

is defined as these forms which are convex combinations of the forms

F ∗(α) for an H linear F : TxM → Hk and α ∈ Λ2k,0
I,R ≥0

(Hk).
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An element α ∈ Λ2k,0
I,R (TxM) is called weakly positive if

α ∧ β ∈ Λ2n,0
I,R ≥0

(TxM)

for any strongly positive β ∈ SP 2(n−k)(TxM). We write

α ∈ Λ2k,0
I,R≥0

(TxM).

We define two types of cones

Λ2k,0
I,R≥0

(M) ⊂ Λ2k,0
I,R (M),

SP 2k(M) ⊂ Λ2k,0
I,R (M),

as these forms which belong pointwise to Λ2k,0
I,R≥0

(TxM), respectively SP 2k(TxM).

Remark 3.2.20. In this text we will write α ≥ 0 for a weakly positive forms and call
such forms positive ones.

The following proposition contains basic properties of the forms pf the types introduced
above. The proofs are standard and we refer to [AV06, V10a] for them.

Proposition 3.2.21. [AV06] Let (M, I, J,K) be a compact hypercomplex manifold. Then
SP 2k(M) and Λ2k,0

I,R≥0
(M) are closed, convex cones with nonempty interior. Moreover the

following inclusions hold
SP 2k(M) ⊂ Λ2k,0

I,R≥0
(M),

SP 2k(M) ∧ SP 2(M) ⊂ SP 2(k+1)(M),

Λ2k,0
I (TxM) = spanCSP

2k(TxM),

SP 2k(M) = Λ2k,0
I,R≥0

(M), for k = 0, 1, n− 1, n,

Λ2,0
I,R≥0

(M) =
{
η ∈ Λ2,0

I,R(M)
∣∣ η(X,XJ) ≥ 0 for all X ∈ Γ(TM)

}
=
{
η ∈ Λ2,0

I,R(M)
∣∣ η(Z,ZJ) ≥ 0 for all Z ∈ Γ(T 1,0M)

}
.

For further discussion let us also introduce the bundle SH(M) of (real parts of) hyper-
hermitian forms on TM . Explicitly this is a subbundle of T ∗M⊗T ∗M such that the fiber
over x ∈ M consists of the elements being symmetric and Ix, Jx, Kx invariant. The fol-
lowing lemma translates to the quaternionic situation the fact that hermitian, symmetric
forms correspond to real, I invariant forms on complex manifolds.

Proposition 3.2.22. [AV06] Suppose (M, I, J,K) is a hypercomplex manifold. Then the
map called t isomorphism, named after Verbitsky [V02],

t : Λ2,0
I,R(M)→ SH(M)

is an isomorphism of vector bundles. It is given by

t(η)(X, Y ) =
1

2
(η(X + Y, (X + Y )J)− η(X,XJ)− η(Y, Y J))

or simply by
t(η)(X,X) = η(X,XJ),

as the symmetric form is uniquely defined by the values on the diagonal, for any η ∈
Λ2,0
I,R(M) and X, Y ∈ Γ(TM). What is more, positive forms correspond bijectively via t to

the non-negative definite hyperhermitian forms.
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Proof. (Sketch) Since the section of SH(M) is uniquely defined by the values on the
diagonal, it is elementary to check that for η ∈ Λ2,0

I,R(M) the tensor t(η) is a section of
SH(M), i.e. it is I and J invariant and symmetric. The inverse map is given by

t−1 : SH(M) 3 g 7−→ g(·J, ·)− ig(·K, ·).
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Chapter 4

Quaternionic pluripotential theory

In this chapter we discuss the potential theory associated to the quaternionic Monge-
Ampère operator in Hn, defining of which will be the prior goal. To our knowledge, the
first to consider this partial differential operator in the flat space Hn was Alesker, cf.
[A03b, A03a]. He developed what we call the first version of pluripotential theory, corre-
sponding to the contents of [BT76] for the complex Monge-Ampère operator. To be more
precise, in [A03a] Alesker introduced the quaternionic Monge-Ampère operator as the
Moore determinant of the quaternionic Hessian and the class of quaternionic plurisubhar-
monic functions in Hn. He applied the procedure from [BT76] to define the quaternionic
Monge-Ampère operator for continuous not necessarily smooth plurisubharmonic func-
tions. Moreover, Alesker proved an infant version of the comparison principle, the most
powerful tool in the pluripotential theory, - the minimum principle, for the continuous
plurisubharmonic functions. Having this part of the theory secured Alesker solved the
degenerate Dirichlet problem, i.e. for the continuous data, in [A03b]. Later, in [A05],
Alesker developed the analogue of the positivity notion, introduced in the complex case
by Lelong, for certain, abstractly defined, vector spaces associated to Hn. It was later
noticed by Verbitsky that the complex Alesker considers in [A05] is isomorphic, in the flat
case, to the so called Salamon complex, defined for any quaternionic manifold in [S86].
Verbitsky found the complex isomorphic to the last one inside the standard De Rham
complex, cf. [V02]. The positivity notion in this language, which we adopted in the last
section, was presented in dept in [V10a].

In parallel, Harvey and Lawson started the project, cf. [HL09a, HL09b], lasting the
recent 15 years or so on generalizing the pluripotential theory to what they call ”geo-
metric context”. They took a unified approach for such theories associated to the wide
class of nonlinear partial differential equations [HL09c]. Their theory covers quaternionic
plurisubharmonic functions and the quaternionic Monge-Ampère equation as special cases,
as we will see in the one of the following sections. This provides evidence that this are the
natural notions to study. Because of the generality of their considerations the approach
they take for weak solutions is the viscosity one, in contrast to ours which is distributional.
Nevertheless, they showed that their solutions are distributional solutions in the case of
an elliptic cone, cf. [HL09b, HL09c]. The quaternionic theory is one of those cases. Let us
also note that the viscosity approach from the start restricts the singularities of the data
for the Dirichlet problem associated with the operator to the continuous ones. As a con-
sequence the results of Harvey and Lawson obtained for the quaternionic Monge-Ampère
equation are exactly those of Alesker.

Finally, motivated by the paper [A12] where Alesker lays foundations for the pluripo-
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tential theory on general quaternionic manifolds, Wan started to adopt the pluripotential
theory to the quaternionic Monge-Ampère operator in, what we call, the full version, as
in [BT82]. The key idea is to define properly the product of currents associated to the
plurisubharmonic functions. This is contained in the papers [WW17, WZ15, WK17, W17,
W19, W20]. As our language is different from the one used in those papers we make a
comparison, showing that this two approaches agree, in the section below. This allows
us to refer to the proofs of some results to these papers instead of recreating the whole
pluripotential theory to the level as in [BT82]. In our opinion this is desirable because
after showing, which we do, that the quaternionic Monge-Ampère operator can be defined
as a product of certain currents no original thought is needed here and the proofs reduce
to changing the symbols in comparison to the, classical, complex case.

4.1 Quaternionic Monge-Ampère operator in Hn

We would like to define the quaternionic Monge-Ampère operator as a determinant of the
quaternionic Hessian. In order to define the quaternionic Hessian, for a function in Hn,
we have to introduce ”the quaternionic derivatives” which formally are certain first order
differential operators.

Definition 4.1.1. For a C2 function f : Hn −→ H and any α ∈ {0, ..., n − 1} we define
the following differential operators

∂q̄αf =
∂

∂q̄α
f =

∂f

∂q̄α
=

∂f

∂x4α

+ i
∂f

∂x4α+1

+ j
∂f

∂x4α+2

+ k
∂f

∂x4α+3

, (I.4.1)

∂qα =
∂

∂qα
f =

∂f

∂qα
=

∂f̄

∂q̄α
=

∂f

∂x4α

− ∂f

∂x4α+1

i− ∂f

∂x4α+2

j− ∂f

∂x4α+3

k. (I.4.2)

These operators are sometimes called the Cauchy-Riemann-Fueter operators, cf. [Su79,
A03a], but as noted in [A03a] they were already considered implicitly by Hamilton himself
and explicitly by Maxwell.

Lemma 4.1.2. [A03a] For any f : Hn −→ H of class C2 and any α, β ∈ {0, ..., n − 1}
one has

∂2f

∂q̄α∂qβ
:=

∂

∂q̄α

∂

∂qβ
f =

∂

∂qβ

∂

∂q̄α
f =:

∂2f

∂qβ∂q̄α
. (I.4.3)

This is not true for two ”holomorphic” or ”anti-holomorphic” derivatives unless one takes
twice the same one. Furthermore, for a real valued f one can show that

∂

∂q̄α

∂

∂qα
f =

∂2f

∂x2
4α

+
∂2f

∂x2
4α+1

+
∂2f

∂x2
4α+2

+
∂2f

∂x2
4α+3

, (I.4.4)

∂

∂q̄α

∂

∂qβ
f =

∂

∂q̄β

∂

∂qα
f. (I.4.5)

Definition 4.1.3. For a real valued function f the matrix

Hess(f,H) =

(
∂2f

∂q̄α∂qβ

)
α,β=1,...,n

is called the quaternionic Hessian of f .
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Remark 4.1.4. A question may arise why not to define the quaternionic Hessian as(
∂2f

∂qα∂q̄β

)
α,β=1,...,n

= Hess(f,H)?

The reason is that we consider Hn to be the right vector space. More precisely we would
like the Hessian to define the hyperhermitian form on Hn, like the real Hessian defines
the symmetric form on Rn and the complex one the hermitian form on Cn. The hyper-
hermitian form, as introduced in Definition 2.2.1, is H linear on the second entry, and
for the right quaternion spaces this is the only reasonable choice. Thus if we had defined
the Hessian in the expected way the associated hyperhermitian form would be

q̄α
∂2f

∂qα∂q̄β
pβ

which does not seem more natural than choosing the convention for Hessian as in Def-
inition 4.1.3 but is not the main reason. We would expect, for any A ∈ Gln(H), when
treating Hess(f,H) as a hyperhermitian form, to have

Hess(f,H)(Aq,Ap) = Hess(f ◦ A,H)(q, p)

for any p, q ∈ Hn. This is the case only with the choice of Definition 4.1.3 as the following
observation shows.

Proposition 4.1.5. [A03a] For f : Hn −→ H a C2 function, A ∈ Gln(H) and

f̃ = f ◦ A : Hn −→ H

we have
Hess(f̃)(r) = A∗Hess(f)(Ar)A

for all r ∈ Hn.

Following the original approach of Alesker [A03a, A03b], we define the quaternionic
Monge-Ampère operator in Hn. This is motivated by the real and complex counterparts.

Definition 4.1.6. The action of the quaternionic Monge-Ampère operator in Hn on a C2

function f : Hn −→ R is given by

MAH(u) := det
(
Hess(f,H)

)
where the determinant means the Moore determinant, cf. Definition 2.4.2.

Remark 4.1.7. Let us note that, by overlooking the observation from the previous remark,
Alesker defined the Monge-Ampère operator in [A03a] as

det

(
∂2f

∂qα∂q̄β

)
α,β=1,...,n

.

This is the same operator. This follows from the fact that the Moore determinant of the
transposed hyperhermitian matrix is the same, as one can verify. This requires though
noting this fact constantly in some proofs, whenever Proposition 4.1.5 is used.
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We would like to make a simple, but fundamental, observation made already in
[A05, AV06] but without exploiting its consequences. The operator defined above can
be expressed in terms of product of certain differential forms in Hn. This trivial ob-
servation allows one to repeat the whole pluripotential theory as developed by Bedford
and Taylor in [BT82] for the complex Monge-Ampère operator. As we mentioned above,
Alesker did this in [A03a, A03b] but the methods were based on those from [BT76]. Let
us remind that in complex case

det
(
Hess(u,C)

)
(idz1 ∧ dz1) ∧ ... ∧ (idzn ∧ dzn) =

1

n!
(i∂∂u)n

for any smooth u : Cn → R, where

Hess(u,C) =
(
∂zi∂zju

)
i,j∈{0,...,n−1}

is by definition the complex Hessian of u. We are about to prove the same for the
quaternionic Hessian and the Moore determinant. As we mentioned this was originally
checked by Alesker and Verbitsky and in a different language by Wan in [WW17]. As our
definition of the Moore determinant is through Pfaffian we can not refer to those proofs
and for the convenience of the reader we perform it.

Proposition 4.1.8. [AV06] For a smooth function u : Hn → R we have

(∂∂Ju)n =
n!

4n
det

(
∂2u

∂ql∂qk

)
l,k∈{0,...,n−1}

dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1.

Proof. We use the coordinate systems φn, giving an isomorphism between Hn and C2n as
a complex vector spaces, and µn from Example 3.2.13. We also use the formulas obtained
there. In particular we know that

∂∂Ju =
∑
i,j

(
(−1)j+1∂zi∂zj+(−1)j

u
)
dzi ∧ dzj

=
∑
i<j

(
(−1)j+1∂zi∂zj+(−1)j

u− (−1)i+1∂zj∂zi+(−1)i
u
)
dzi ∧ dzj

=
∑
l<k

(
∂z2k∂z2l+1

u− ∂z2l∂z2k+1
u
)
dz2l ∧ dz2k

+
∑
l,k

(
∂z2l∂z2ku+ ∂z2k+1

∂z2l+1
u
)
dz2l ∧ dz2k+1

+
∑
l<k

(
∂z2l+1

∂z2ku− ∂z2k+1
∂z2lu

)
dz2l+1 ∧ dz2k+1.

Furthermore, we note that for any smooth function u : Hn → H and any l ∈ {0, ..., n− 1}

∂qlu = ∂x4lu+ i∂x4l+1
u+ j∂x4l+2

u+ k∂x4l+3
u = 2

(
∂z2lu+ j∂z2l+1

u
)
,

as well as for any smooth function u : Hn → R and any k ∈ {0, ..., n− 1}

∂qku = ∂x4ku− i∂x4k+1
u− j∂x4k+2

u− k∂x4k+3
u = 2

(
∂z2ku− j∂z2k+1

u
)
.

From this we see the following relation between complex and quaternionic Hessians.
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Lemma 4.1.9. For a smooth function u : Hn → R and any l, k ∈ {0, ..., n− 1}

∂ql∂qku

=
(
2∂z2l + 2j∂z2l+1

) (
2∂z2ku− 2j∂z2k+1

u
)

= 4
(
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
)

+ 4j
(
∂z2l+1

∂z2ku− ∂z2l∂z2k+1
u
)
.

This lemma enables us to observe that

Ψn

((
∂ql∂qku

)
l,k

)
= 4

((
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
)
l,k

(
− ∂z2l+1

∂z2ku+ ∂z2l∂z2k+1
u
)
l,k(

∂z2l+1
∂z2ku− ∂z2l∂z2k+1

u
)
l,k

(
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
)
l,k

)
.

This consequently means that

InΨn

((
∂ql∂qku

)
l,k

)
= 4

(
−
(
∂z2l+1

∂z2ku− ∂z2l∂z2k+1
u
)
l,k
−
(
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
)
l,k(

∂z2l∂z2ku+ ∂z2l+1
∂z2k+1

u
)
l,k

(
− ∂z2l+1

∂z2ku+ ∂z2l∂z2k+1
u
)
l,k

)
.

From all of this and Definition 2.3.7 we see, by taking ei+1 := dz2i and ei+1+n := dz2i+1,
that

4n

n!
(∂∂Ju)n

= Pf
(
− InΨn

(
Hess(u,H)

))
dz0 ∧ dz2 ∧ ...dz2n−2 ∧ dz1 ∧ dz3 ∧ ... ∧ dz2n−1

= (−1)nPf
(
InΨn

(
Hess(u,H)

))
dz0 ∧ dz2 ∧ ...dz2n−2 ∧ dz1 ∧ dz3 ∧ ... ∧ dz2n−1.

On the other hand

det

(
∂2u

∂ql∂qk

)
l,k∈{0,...,n−1}

dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1

= Pf(In)Pf
(
InΨn

(
Hess(u,H)

))
dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1.

The proof reduces thus to showing

(−1)ndz0 ∧ dz2 ∧ ... ∧ dz2n−2 ∧ dz1 ∧ dz3 ∧ ... ∧ dz2n−1

= Pf(In)dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1.

This is easy to verify by rewriting in the basis es as

(−1)ne1 ∧ ... ∧ e2n = Pf(In)e1 ∧ e1+n ∧ ... ∧ en ∧ en+n

which was shown in the last line of the proof of Proposition 2.4.3.

Remark 4.1.10. It is trivial to check that for a smooth real valued function u we have

(ddcu)2n = 22n(i∂∂u)2n

= 42n(2n)! det

(
∂2u

∂zi∂zj

)( i
2
dz0 ∧ dz0

)
∧ ... ∧

( i
2
dz2n−1 ∧ dz2n−1

)
.
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4.2 Quaternionic plurisubharmonic functions

In this section we define the quaternionic plurisubharmonic functions in Hn, the exposi-
tion is based on [A03a, A03b, WK17]. They were introduced in the first reference but
independently by G. Henkin as Alesker notes there. One should note that this class of
functions was also, implicitly, discussed by Hörmander in his book [Hö07] as a special
case, corresponding to the group GLn(H) · Sp(1) – his considerations were more general,
cf. Chapters V and VI.

Definition 4.2.1. Let D be a domain in Hn. We call an upper semi-continuous function
f : D → R (strictly) quaternionic plurisubharmonic (abbreviated qpsh) if f restricted
to any affine right quaternionic line intersected with D is (strictly) subharmonic as a
function on a domain in R4. The set of all qpsh functions on D is denoted by QPSH(D).

Both assertions from the following remark are easy consequences of Fubini’s theorem
and the fact that a quaternionic line is a complex two plane.

Remark 4.2.2. A qpsh function f is subharmonic as a function from a domain in R4n.
If we fix t ∈ {ai + bj + ck | a2 + b2 + c2 = 1} an imaginary unit and consider Hn as a
complex vector space where multiplication by i is given by the right multiplication by t then
plurisubharmonic functions with respect to this complex structure are qpsh. We will use
that remark only for t = i i.e. only for Hn treated as C2n via the chart φn.

For a smooth function plurisubharmonicity is equivalent to the non-negativity of the
quaternionic Hessian, being by definition the non-negativity of the associated hyperher-
mitian form.

Proposition 4.2.3. [A03a] A function f : D → R of class C2 is qpsh if and only if

Hess(f,H) =

(
∂2f

∂q̄α∂qβ

)
α,β=1,...,n

is non-negative definite, which by definition means that

pα
∂2f

∂q̄α∂qβ
pβ ≥ 0

for any p ∈ Hn.

Most of the standard properties of plurisubharmonic functions, like approximation by
smooth ones, mean value inequalities, convergence theorems, balayage procedure etc., see
[D12, GZ17, K05, Hö07] for the panoramic view, still do hold for this class of functions.
We will provide a precise reference once a certain property is used. There are differences
though as well, mostly coming from an analytic point of view. Some of them will be
discussed in the last section of this chapter. For the purpose of the next section we need
the following.

Proposition 4.2.4. A smooth function f : D → R is qpsh if and only if ∂∂Jf ≥ 0.

Proof. This follows from Proposition 3.2.22 and an easy computation, based on the one
performed in the proof of Proposition 4.1.8,

t(∂∂Jf)
(
x4i∂x4i + x4i+1∂x4i+1

+ x4i+2∂x4i+2
+ x4i+3∂x4i+3

,
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x4i∂x4i + x4i+1∂x4i+1
+ x4i+2∂x4i+2

+ x4i+3∂x4i+3

)
=

1

4
(x4i − x4i+1i− x4i+2j− x4i+3k)

(
∂2f

∂qi∂qj

)
(x4j + x4j+1i + x4j+2j + x4j+3k)

for any xl ∈ R and l ∈ {0, ..., 4n− 1}.

4.3 Potential theory associated to quaternionic

Monge-Ampère operator

This is the core section of this chapter. Basic references for quaternionic pluripotential
theory are [AV06, WZ15, WK17, WW17]. For the further usage we introduce in Hn the
differential forms

ω =
2n−1∑
i=0

i

2
dzi ∧ dzi,

ω2n :=
ω2n

(2n)!
=

1

4n
Ωn ∧ Ωn,

Ω =
n−1∑
i=0

dz2i ∧ dz2i+1,

Ωn :=
Ωn

n!
= dz0 ∧ dz1 ∧ ... ∧ dz2n−2 ∧ dz2n−1.

Since we will extensively use facts from pluripotential theory, reproved in the quaternionic
setting by Wan, Wang, Kang and Zhang it is desirable to compare differential operators
∂, ∂J which we use with their formally defined operators d0, d1. Those were introduced by
Wan and Wang in [WW17] to which we refer for more details. They consider the following
”coordinates” given in our coordinates from Example 3.2.13 by

zj0 = x2j + (−1)j+1x2j+1i = zj,

zj1 = (−1)j+1x2(j+(−1)j) + x2(j+(−1)j)+1i = (−1)j+1zj+(−1)j ,

for j = 0, ..., 2n− 1 and the associated formal derivatives

∇j0 = ∂x2j + (−1)j∂x2j+1i = 2∂zj ,

∇j1 = (−1)j+1∂x2(j+(−1)j) − ∂x2(j+(−1)j)+1i = (−1)j+12∂z
j+(−1)j

.

Afterwards they fix a complex basis

ω0, ..., ω2n−1

of C2n, which after choosing the canonical basis we note to be isomorphic to (C2n)
∗
. Then

they take the associated basis
ωI := ωi1 ∧ ... ∧ ωik ,

for I = (i1, ..., ik) such that i1 < ... < ik belong to {0, ..., 2n− 1}, of the complex exterior
product Λk(C2n). Again we note it is isomorphic to Λk(C2n∗) which in turn is, only in
the flat case, isomorphic to Λk,0

I (Hn). Finally, the operators defined by Wan and Wang
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on multivectors, after taking the mentioned isomorphisms, act between the spaces of
differential forms

di : Λk,0
I (Hn) ≈ C∞(Hn,ΛkC2n)→ C∞(Hn,Λk+1C2n) ≈ Λk+1,0

I (Hn),

for i = 0, 1, in the following way. Suppose that

F =
∑
I

fIω
I ,

for the multi-index I as above, then

diF =
∑

I,k∈{0,...,2n−1}

(∇kifI)ω
k ∧ ωI .

From the formulas for ∇ki, we obtain

d0F =
∑

I,k∈{0,...,2n−1}

(∇k0fI)ω
k ∧ ωI =

∑
I,k∈{0,...,2n−1}

2 (∂zkfI)ω
k ∧ ωI ,

d1F =
∑

I,k∈{0,...,2n−1}

(∇k1fI)ω
k ∧ ωI =

∑
I,k∈{0,...,2n−1}

2(−1)k+1
(
∂z

k+(−1)k
fI

)
ωk ∧ ωI .

Proposition 4.3.1. By taking the basis ωk = (−1)kdzk+(−1)k in the definition of d0 and
d1 we obtain

d0 = 2∂J ,

d1 = −2∂,

∆ := d0d1 = 4∂∂J .

Proof. Let us recall that

∂J = J−1 ◦ ∂ ◦ J

and that J acts as

J(dzk) = (−1)k+1dzk+(−1)k .

For F =
∑
I

fIω
I , we obtain

∂F =
∑

I,k∈{0,...,2n−1}

(∂zkfI)dzk ∧ ωI ,

∂JF = J−1 ◦ ∂(
∑
I

fIJ(ωI)) = J−1

 ∑
I,k∈{0,...,2n−1}

(∂zkfI)dzk ∧ J(ωI)


= J−1

 ∑
I,k∈{0,...,2n−1}

(∂z
k+(−1)k

fI)dzk+(−1)k ∧ J(ωI)


=

∑
I,k∈{0,...,2n−1}

(∂z
k+(−1)k

fI)J
−1(dzk+(−1)k)∧ωI =

∑
I,k∈{0,...,2n−1}

(∂z
k+(−1)k

fI)(−1)k+1dzk ∧ωI .
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This results in

d0F = 2
∑

I,k∈{0,...,2n−1}

(∂zkfI)ω
k ∧ ωI

= 2
∑

I,k∈{0,...,2n−1}

(−1)k (∂zkfI) dzk+(−1)k ∧ ωI

= 2
∑

I,k∈{0,...,2n−1}

(−1)k+1
(
∂z

k+(−1)k
fI

)
dzk ∧ ωI = 2∂JF,

d1F = 2
∑

I,k∈{0,...,2n−1}

(−1)k+1
(
∂z

k+(−1)k
fI

)
ωk ∧ ωI

= 2
∑

I,k∈{0,...,2n−1}

(−1)
(
∂z

k+(−1)k
fI

)
dzk+(−1)k ∧ ωI = -2∂F.

Remark 4.3.2. Let us just emphasize that the choice of ∂, ∂J for our considerations
instead of d0, d1 has some deeper than just conventional meaning. These are the natural
intrinsic operators not only in Hn but on any hypercomplex manifold. In fact on an
abstract hypercomplex manifold quaternionic plurisubharmonic functions are defined only
with their aid, cf. [AV06], since the local chart definition is not possible due to non-
integrability of a generic hypercomplex structure i.e. non-existence of quaternionic charts.

From Proposition 4.3.1 it follows that we are able to use all results from [WZ15, WK17,
WW17] as well as from [A03b, A03a, AV06]. We just give here the necessary details and
refer to the mentioned papers for more of them. We implicitly assume familiarity with
the distribution theory, though we fix the notation below. The excellent references for
what is sufficient for us are the lecture notes of Dinh and Sibony [DS05] and the classic
book of Federer, sections 4.1.1-4.1.7, [F69]. For a domain D ⊂ Hn we denote by

Dp[k](D) – space of complex p forms of class Ck on D with a compact support,

Dp(D) – space of complex p forms of class C∞ on D with a compact support,
Dp,q[k] (D) := Dp,qI,[k](D) – space of (p, q) forms, with respect to I, of class Ck on D with a

compact support,
Dp,q(D) := Dp,qI (D) – space of (p, q) forms, with respect to I, of class C∞ on D with a

compact support,

endowed with the usual topologies, cf. [F69], making them topological vector spaces.
Their topological duals are the standard

D′p,[k](D) :=
(
D4n−p

[k] (D)
)′

– space of currents of degree p of order k,

D′p(D) := (D4n−p(D))
′

– space of currents of degree p,

Dp,q,[k](D) :=
(
D2n−p,2n−q

[k] (D)
)′

– space of currents of bidegree (p, q) of order k,

Dp,q,[k](D) := (D2n−p,2n−q(D))
′

– space of currents of bidegree (p, q).

Remark 4.3.3. It follows from Riesz’ type theorem that currents of degree 4n, called
distributions, and of order zero are Borel measures. Those taking real values on real
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functions are called real measures and those taking non-negative values on non-negative
functions – positive. For a current T being a measure we use the integration notation, i.e.

T (f) :=

∫
D

fT

for any test function f , and its extended action on any Borel function. We denote by Lm
the Lebesgue measure in Rm normalized so that the volume of the unit cube is one.

Every element α ∈ Λp
C(D) defines a current, still denoted by α ∈ D′p(D), whose action on

a test form β ∈ D4n−p(D) is given by

α(β) :=

∫
D

α ∧ β.

The wedge product of a p current T and a q form α is defined by

T ∧ α := T (α ∧ ·).

Remark 4.3.4. Taking the trivialization ω2n of Λ4n
C (D) and 1

4n
Ωn of Λ0,2n(D) allows to

treat the currents of degree 0 and bidegree (2n, 0) as distributions.

Definition 4.3.5. [WW17] A current T of bidegree (2p, 0) is called positive if for any
α ∈ D2n−2p,0(D) ∩ SP 2n−2p(D) the distribution

T ∧ α

is positive, i.e. for any α ∈ D2n−2p,0(D) ∩ SP 2n−2p(D)(
T ∧ Ωn

)
(α) ≥ 0.

We already noticed, in Proposition 4.2.4, that for a smooth function being qpsh is
equivalent to ∂∂Ju ≥ 0. Let us elaborate on this for merely upper-semicontinuous ones.
It was already noted in Proposition 3.7 in [WW17], in their language, that ∂∂Ju is a
positive current for any qpsh function. This follows from Proposition 4.2.4, approximation
of singular qpsh functions by smooth ones and the fact that a weak limit of positive (2, 0)
currents is positive again. Wan and Wang showed that like in the complex case, cf.
[BT82], one can define (∂∂Ju)n for any locally bounded u and treat it as a measure.
This is possible even for some functions which are not locally bounded i.e. more singular
ones but the former is already more than enough for most applications. This is done as
follows. For any locally bounded u and positive current T , which is easy to show has
measure coefficients, we define

∂∂Ju ∧ T := ∂∂J(uT ).

The point is that this agrees with the wedge product of forms when u is smooth and that
the product uT makes sense since the measurable coefficients can be multiplied by any
function locally integrable with respect to this measure, in particular by a locally bounded
one. We refer to Proposition 3.9 in [WW17] for details on this construction.

Remark 4.3.6. We call
(∂∂Ju)n

the Monge-Ampère operator, the Monge-Ampère density or the Monge-Ampère mass as-
sociated to u. Taking into an account Proposition 4.1.8 this convention is compatible with
Definition 4.1.6.
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From there one can recreate most of the facts which hold for plurisubharmonic func-
tions. We note that in [A03a] Alesker showed that (∂∂Ju)n can be interpreted as a measure
for continuous u. The last result follows from the analogue of the Chern-Levine-Nirenberg
inequalities, cf. Proposition 2.1.8 in [A03a] and Proposition 3.10 in [WW17]. In [WZ15]
another important tool in the pluripotential theory – the quaternionic relative capacity –
is introduced in the spirit of Bedford and Taylor.

Definition 4.3.7. [WZ15] Let K ⊂ D be a compact set, define

cap(K,D) = sup

{∫
K

(∂∂Ju)n | u ∈ QPSH(D), 0 ≤ u ≤ 1

}
to be the capacity of K associated to the quaternionic Monge-Ampère operator. If it is
clear from the context with respect to which domain the capacity is measured we put

cap(K,D) = cap(K).

For a Borel set E ⊂ D this is extended by

cap(E,D) = sup{cap(K,D) |K is compact in D}.

What is more authors proved the quasi-continuity of qpsh functions, cf. Theorem 1.1
in [WW17], i.e. that qpsh function are continuous off the sets of arbitrary small capacity.
Most notably this allows to show the comparison principle for merely locally bounded
functions and not only continuous ones, cf. Theorem 1.2 and Corollary 1.1 in [WZ15],
in which case the proof is much simpler. This is probably the most powerful tool in
pluripotential theory. The statement is exactly as we know it in the complex case but we
recall it for reader’s convenience.

Theorem 4.3.8. [WZ15] Let u, v ∈ QPSH(D) ∩ L∞loc(D). If for any ξ ∈ ∂D,

lim inf
q→ξ

(u(q)− v(q)) ≥ 0

then ∫
{u<v}

(∂∂Jv)n ≤
∫

{u<v}
(∂∂Ju)n.

In particular if (∂∂Jv)n ≥ (∂∂Ju)n as measures then u ≥ v in D.

Finally, Wan and Zhang characterized maximality of a bounded qpsh function in terms
of vanishing of its Monge-Ampère mass, cf. Theorem 1.3 in [WZ15]. Here we mean the
maximality in the following sense.

Definition 4.3.9. The function u ∈ QPSH(D) is maximal if for any v ∈ QPSH(D)
and compact K ⊂ D the inequality

u ≥ v holds on K

provided the equality
u = v holds on ∂K.

For the survey of function theoretic properties of the class QPSH(D) we refer to
[WK17]. For the rest of the text we denote by D a fixed quaternionic strictly pseudoconvex
domain defined, in the analogy with [CNS85], as follows.
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Definition 4.3.10. A smoothly bounded domain D ⊂ Hn such that there exists a domain
U and the function ρ satisfying

ρ ∈ QPSH(U) ∩ C2(U)

D ⊂⊂ U

D = {ρ < 0}
dρ 6= 0 on ∂D

(∂∂Jρ)n ≥ Ωn on U

is called quaternionic strictly pseudoconvex.

4.4 Quaternionic Monge-Ampère equation in Hn

We state here the known results about the solvability of the Dirichlet problem for the
quaternionic Monge-Ampère equation in Hn.

In the paper [A03b] Alesker solves the problem with a smooth boundary data for the
ball, applying Caffarelli, Kohn, Nirenberg and Spruck’s arguments from [CKNS85]. Then
using smooth solutions obtained that way, coupled with Bedford and Taylor’s approach
from [BT76], he solves the Dirichlet problem with the continuous boundary data and the
right hand side continuous up to the boundary, when the domain is strictly pseudoconvex
in quaternionic sense. The same was shown by Harvey and Lawson for the homogeneous
problem, cf. Theorem 6.2 and Example 10.9 in [HL09c], and for the inhomogeneous in
[HL20], cf. Theorem 2.11 and Example 6.7. But their approach was much more general
in the sense that they treated a wide class of equations covering the quaternionic Monge-
Ampère equation as a special case.

Theorem 4.4.1. [A03b], [HL09c], [HL20] Let D ⊂ Hn be a quaternionic strictly pseudo-
convex domain. Suppose f ∈ C(D) is non-negative and φ ∈ C(∂D). There exists a unique
solution to the Dirichlet problem

det
(

∂2u
∂q̄α∂qβ

)
α,β=1,...,n

= fΩn in D,

u|∂D = φ,

u ∈ C(D) ∩QPSH(D).

Regularity of this solutions has been proved only recently by Zhu in [Z17]. The method
of the paper is in turn the refinement of, now classical, methods from the paper [CNS85].
To be more precise Zhu proves the following.

Theorem 4.4.2. [Z17] For a quaternionic strictly pseudoconvex domain D,

f ∈ C∞(D × R)

a positive function such that fx, where x is an R coordinate, is non-negative on D × R
and φ ∈ C∞(∂D) the Dirichlet problem

det
(
∂2u(q)
∂q̄α∂qβ

)
α,β=1,...,n

= f(q, u(q)) in D,

u|∂D = φ,

u ∈ QPSH(D),
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has a unique smooth solution.

After developing a sufficient part of the potential theory associated to the quaternionic
Monge-Ampère operator Wan, motivated by the methods used originally by Cegrell and
Persson [CP92], obtained a result on the solvability of the Dirichlet problem with a right
hand side being a measure possessing a density with respect to the Lebesgue measure.

Theorem 4.4.3. [W20] Suppose D ⊂ Hn is a quaternionic strictly pseudoconvex domain,
f ∈ Lq(D) for q ≥ 4 is a non-negative function and φ ∈ C(∂D). Then the Dirichlet
problem 

(∂∂Ju)n = fΩn in D,

u|∂D = φ,

u ∈ QPSH(D) ∩ C(D),

has a unique solution.

Remark 4.4.4. The solutions in the statement of the theorem in [W20] were claimed to
be bounded but it is easy to observe that the obtained solutions, being the uniform limit of
continuous functions, are continuous.

This was the strongest existence result for the singular right hand side concerning the
existence of the continuous solutions, before the paper [Sr18], leaving it open whether one
can improve the exponent q. We will settle this issue in the second part of the text.

4.5 Glance from the unified point of view

Before going to the first original result of ours in the next section, we would like to
leave the specialized, quaternionic, situation for the moment in order to grasp a broader
perspective. This will allow us to see if it is worth to consider the issues discussed so far
in this chapter.

In the recent years Harvey and Lawson started a lasting stream of research on carrying
over the interplay between the classical (complex) pluripotential theory and the theory of
degenerate fully nonlinear elliptic PDEs (classically the complex Monge-Ampère equation)
to the broader context. This is the contents of the papers [HL09a, HL09b, HL09c, HL10,
HL11, HL12, HL13, HL19, HL20]. As we will see the above discussed equation and the
associated potential theory constitutes one, next to the real and the complex Monge-
Ampère equations, of the three fundamental examples fitting into their theory.

We warn the reader that this section is meant to serve the motivational purpose only
so will be vague from time to time as the proper presentation of the subject would require
at least a separate thesis.

Let us start with the pluripotential side of the story. The adequate references are
[HL09a, HL10, HL12], where the second one treats the most general cone case. Chrono-
logically the starting point, cf. [HL09a], was in the presence of the calibration, the fun-
damental notion in studying special geometries, introduced by Harvey and Lawson in the
celebrated paper [HL82]. To the contrary we begin with the most general case and then
reduce to the described one. Suppose we are given a cone

P in Herm(R, n) - the space of symmetric n× n real matrices,
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which in case of a careful discussion has to satisfy a number of conditions. Instead of
giving them we will see some (further) examples shortly, for now the reader may take

P = P+ := {A ∈ Herm(R, n) | A ≥ 0}.

To any such a cone Harvey and Lawson associate a class

PSH(P)

of (upper semi-continuous) functions u by requiring that (in the smooth case)

Hess(u,R) ∈ P

pointwise and prove that the standard (function theoretic) results for the subharmonic
functions have their analogues for those classes. More specialized situation, described with
a great care in [HL12], is the case when P is geometrically motivated in the following sense.
Suppose we are given

G a subset of the Grassmannian Gr(p,Rn)

of the p dimensional planes in Rn. We set

P(G)

to be the collection of those A ∈ Herm(R, n) which, when treated as a quadratic forms,
restricted to any plane in G have the non-negative trace. After a moment of reflection
one realizes that this means that the (smooth) functions belonging to

PSH(G) := PSH (P(G))

are those which are subharmonic, with respect to the flat metric in Rn, after restricting
to any plane in G. Finally, the even more specialized situation appears in the presence
of the calibration Φ. Calibration is by definition a closed form in Rn of the comass 1,
meaning that evaluated on any simple co-vector of the norm one it does not exceed one
as well. In this case we define the set of the so called calibrated planes

G(Φ) := {q ∈ Gr(degΨ,Rn) | Φ(q) = 1}.

In the above, we treat a plane as a simple co-vetor formed by taking the wedge product
of any positively oriented orthonormal basis of that plane.

Having said this let us go to the mentioned three fundamental examples, those cor-
responding to the fields R, C and H. Below we always treat Cn and Hn as a real vector
spaces remembering merely which planes in the associated Grassmannians correspond to
the, respectively, complex and (right) quaternionic lines.

Rn −→ G(R) := GrR(1,Rn) −→ PSH(R) := PSH
(
P (G(R))

)
theory of convex functions

Cn ∼ R2n −→ G(C) := GrC(1,Cn) ⊂ GrR(2,R2n) −→ PSH(C) := PSH
(
P (G(C))

)
theory of plurisubharmonic functions

Hn ∼ R4n −→ G(H) := GrH(1,Hn) ⊂ GrR(4,R4n) −→ PSH(H) := PSH
(
P (G(H))

)
theory of quaternionic plurisubharmonic functions
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We note that

P(G(C)) = {A ∈ Herm(R, 2n) | 1

2
(A− IAI) ≥ 0},

P(G(H)) = {A ∈ Herm(R, 4n) | 1

4
(A− IAI − JAJ −KAK) ≥ 0},

where I, J , and K are the matrices of the endomorphisms of R2n and R4n induced by
the right multiplication by, respectively, i, j and k before forgetting this structures on Cn

and Hn. This shows that the (smooth) functions belonging to PSH(C) and PSH(H) are,
respectively, those with

Hess(u,C) = (uij̄)i,j ≥ 0 for uij̄ = ∂2u
∂zi∂zj

,

Hess(u,H) = (uij̃)i,j ≥ 0 for uij̃ = ∂2u
∂qi∂qj

.

This in turn follows from

Hess(u,C) =
1

2
(Hess(u,R)− IHess(u,R)I) ,

Hess(u,H) =
1

4
(Hess(u,R)− IHess(u,R)I − JHess(u,R)J −KHess(u,R)K) ,

where in the above we constantly identify the matrix from M(n,K) with the matrix of
the associated endomorphism of RN via the isomorphisms introduced in Chapter 2 and
Example 3.2.13.

The last, but important, remark is that this two cases i.e. of complex and quaternionic
plurisubharmonic functions correspond to the calibration in the description above. The
calibrations are the standard Kähler form ωI in Cn and, also standard, hyperKähler form

1

6

(
ω2
I + ω2

J + ω2
K

)
in Hn. It was explained in [HL09a] that those calibrate, respectively, affine complex
and quaternionic lines. This partially explains why there is such a difference between
the theory of convex functions and its complex analogues. The point being that in the
presence of the calibration Ψ Harvey and Lawson define the twisted differential

dΨ,

which was independently discussed by Verbitsky in [V10b, V11], and what they call the
Ψ Hessian

ddΨ.

The last one being a form of degree degΨ. As the reader probably expects in the described
cases the complex Hessian corresponds to

ddωI

and the quaternionic one to

dd
1
6(ω2

I+ω2
J+ω2

K),

50

50:7918496616



this last fact was noted in [HL09b]. We hope this discussion well motivates the study of
the quaternionic pluripotential theory discussed in this chapter.

Turning to the PDE part of their development we point that it is covered by [HL09c,
HL11, HL13, HL20, HL19]. For the simplicity we stick to the homogeneous case where
the framework is as follows. Instead of dealing with the differential operator/equation
Harvey and Lawson again fix a cone P as above. What is allowing them to cover an
extremely wide spectrum of cases is that they treat the suitably set Dirichlet problem,
Theorem 6.2 in [HL09c]. In case of the smooth functions it reduces to requiring that the
Hessian of the solution belongs to the boundary of P , i.e.

Hess(u,R) ∈ ∂P .

Of course we miss a number of key details of the discussion but the important note is, cf.
Chapter 10 in [HL09c], Example 5.8 in [HL13], Examples C, D, G as well as Sections 4.5,
4.6 and 15 in [HL11], Examples 6.3, 6.4 in [HL20], that in the case of the cones as above
we obtain the following operators.

Pn(R) := P (G(R)) −→ detHess(u,R)
the real Monge-Ampère operator

Pn(C) := P (G(C)) −→ detHess(u,C)
the complex Monge-Ampère operator

Pn(H) := P (G(H)) −→ detHess(u,R)
the quaternionic Monge-Ampère operator

The last point we would like to make is that by considering a more general type of cones
Harvey and Lawson covered the so called Hessian type equations over all three mentioned
fields. This is done in [HL13] as follows. Let Pm be the elementary symmetric polyno-
mial of degree m in n variables, this is an example of the so called G̊arding hyperbolic
polynomial. For this polynomials one can consider the associated cones

Pm := {x ∈ Rn | Pm(x) ≥ 0, ..., P1(x) ≥ 0}.

Using that cones we define below the cones in Herm(R, n), with the convention that
λ(A) denotes the increasingly ordered n tuple of the eigenvalues of the matrix A from
respectively Herm(R, n), Herm(C, n), Herm(H, n).

Pm(R) := {A ∈ Herm(R, n) | λ(A) ∈ Pm} −→ Pm (λ (Hess(u,R)))
the real m-Hessian operator

Pm(C) := {A ∈ Herm(R, 2n) | λ
(

1
2

(A− IAI)
)
∈ Pm} −→ Pm (λ (Hess(u,C)))

the complex m-Hessian operator

Pm(H) := {A ∈ Herm(R, 4n) |
λ
(

1
4

(Hess(u,R)− IHess(u,R)I − JHess(u,R)J −KHess(u,R)K)
)
∈ Pm}

−→ Pm (λ (Hess(u,H)))
the quaternionic m-Hessian operator
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Those types of equations have intrigued analysts for a long time. We just mention a
few results in the classical – real and complex cases. We concentrate here on the subject
of our interest in this chapter – the degenerate equations. Weak solution to the real
Monge-Ampère equation were found in [Al58, RT77]. An analogous result for the complex
Monge-Ampère equation was obtained by Ko lodziej [K95, K96, K98] generalizing prior
results of Bedford and Taylor [BT76] and Cegrell and Persson [C84, CP92]. The real
Hessian equations are treated in the fundamental papers [TW97, TW99, TW02]. The
basic references for the complex Hessian equations are [B05] and [DK14].

4.6 Local integrability of qpsh functions

In this section we address the question of local integrability of qpsh functions in a domain
D ⊂ Hn demonstrating that they exhibit an unusual property in that context. For
plurisubharmonic functions in Cn it is known that they are locally integrable with any
power p ≥ 1. For the more general class of m-subharmonic functions in Cn we know that
they belong to Lploc for

p <
n

n−m
,

cf. [B05]. On the other hand the fundamental solution for a complex m-Hessian equation

f(z) = − ‖ z ‖2−2 n
m ,

is integrable with any exponent

p <
mn

n−m
.

The conjecture of B locki is that any m-subharmonic function is locally as integrable as
the fundamental solution, cf. [B05]. This was confirmed by Dinew and Ko lodziej, cf.
[DK14], provided the function is bounded near the boundary of D but it still may have
poles inside. In the real case the similar problem is settled. For the m-convex functions,
when m ≤ n

2
because otherwise they have no poles at all, it was shown in [TW99] that

they belong to Lploc for

p <
nm

n− 2m
.

This turns out to be optimal for the fundamental solution to the real m-Hessian equation
as well. We will see that the qpsh functions are the ones which do not share this property.
The proof of the proposition below is inspired by the presentation in [Hö07]. Those results
are taken from [Sr18].

Proposition 4.6.1. [Sr18] Suppose u ∈ QPSH(D) is such that u 6≡ −∞. Then

u ∈ Lploc(D)

for any p < 2 and the bound on p is optimal. What is more if uj 6≡ −∞ is a sequence
of qpsh functions converging in L1

loc(D) to some u, necessarily belonging to QPSH(D),
then the convergence holds in Lploc(D) for any p < 2.

Proof. Suppose without loss of generality that u ≤ 0 in a neighborhood of a quaternionic
polyball P (0, 1) :=

(
B(0, 1)

)n
of radius 1 centered at 0 contained in D, such that u(0) >
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−∞ and fix p < 2. Let us deal firstly with the case n = 1. From the Riesz representation
theorem, cf. Theorem 3.3.6 in [Hö07],

u(q) = h(g) +

∫
‖ξ‖<1

G(q, ξ)dµ(ξ)

for some non positive harmonic function h in the ball B(0, 1) := B1, non-negative Borel
measure µ and Green’s function

G(q, ξ) = − 1

‖ q − ξ ‖2
+

1

‖ (q − ξ
|ξ|2 )|ξ| ‖2

.

By Harnack’s inequality, cf. Theorem 3.1.7 in [Hö07], for any ‖ q ‖< 1
2

we have

0 ≤ −h(q) ≤ 1+ ‖ q ‖
(1− ‖ q ‖)3

(−h(0)) ≤ 12(−h(0)).

This shows that
‖ h ‖Lp(B(0, 1

2
))≤ Cp|h(0)|

for a constant Cp, depending only on p < 2, which we may still need to increase (see
below).

For estimating the second component of the decomposition of u let us introduce the
following notation

H(q, ξ) = −G(q, ξ) ≥ 0. For ξ = 0 we have H(q, 0) = 1
‖q‖2 − 1.

We consider two cases depending on whether ξ is close to the center or to the boundary
of B1.

In the first case, say when ‖ ξ ‖≤ 3
4
, we use the estimate

0 ≤ H(q, ξ) ≤ 1
‖q−ξ‖2

for any q and ξ, consequently ∫
‖q‖< 1

2

(H(q, ξ))p dL4(q)


1
p

≤

 ∫
‖q‖< 1

2

1

‖ q − ξ ‖2p
dL4(q)


1
p

≤

 ∫
‖q‖< 5

4

1

‖ q ‖2p
dL4(q)


1
p

≤ C ′p

(
1

‖ ξ ‖2
− 1

)

for a constant C ′p independent of ξ and depending only on p < 2, since the expression
1
‖ξ‖2 − 1 is bounded from below for ‖ ξ ‖≤ 3

4
.

In the second case, say when ‖ ξ ‖≥ 3
4
, we note that for any fixed ξ the function H(·, ξ)

is non negative and harmonic in B 3
4
. Applying Harnack’s inequality for each fixed ξ we

obtain that for all ‖ ξ ‖≥ 3
4

and for all ‖ q ‖< 3
4

0 ≤ H(q, ξ) ≤
(

3
4

)2 3
4

+‖q‖
( 3
4
−‖q‖)3H(0, ξ),
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hence for all ‖ ξ ‖≥ 3
4

and ‖ q ‖< 1
2

0 ≤ H(q, ξ) ≤ 45
(

1
‖ξ‖2 − 1

)
.

To sum up we have proven that there exists a constant Cp = max{C ′p, 45}, independent
of ξ, such that for ‖ ξ ‖< 1

‖ H(·, ξ) ‖Lp(B(0, 1
2

))≤ Cp

(
1
‖ξ‖2 − 1

)
.

From Minkowski’s inequality and Minkowski’s integral inequality we obtain

‖ u ‖Lp(B(0, 1
2

))≤‖ h ‖Lp(B(0, 1
2

)) +

 ∫
‖q‖< 1

2

|
∫
‖ξ‖<1

H(q, ξ)dµ(ξ) |p dL4(q)


1
p

≤ Cp|h(0)|+
∫
‖ξ‖<1

 ∫
‖q‖< 1

2

H(q, ξ)pdL4(q)


1
p

dµ(ξ)

≤ Cp

|h(0)|+
∫
‖ξ‖<1

(
1

‖ ξ ‖2
− 1

)
dµ(ξ)

 = Cp|u(0)|.

Using Fubini’s theorem and the estimate above one obtains that in the case of n ≥ 1 we
have

‖ u ‖Lp(P (0, 1
2

))≤ Cn
p |u(0)|.

To the end observe that D′, the set of points in D in a neighborhood of which u is
integrable with exponent p, is an open set by definition. It is closed by what we have
just shown. This is so because if q ∈ D′ and r > 0 is such that P (q, 3r) ⊂⊂ D then
we can find and element q′ of D′ within r

2
distance from q and a point q′′ ∈ D within r

2

distance from q′ such that u(q′′) is finite. We note that P (q′′, 2r) ⊂⊂ D, consequently
u is integrable with the exponent p on P (q′′, r), and q ∈ P (q′′, r). What is more D′ is
nonempty by the assumption u 6≡ −∞. The bound on p is optimal as the example of
− 1
‖q0‖2 in Hn for n ≥ 1 shows.

For the proof of the second assertion we note that the sequence uj − u is bounded in
Lploc(D) for any 1 ≤ p < 2. To prove this it is enough to show that the sequence uj is
bounded in Lploc(D). Fix any point q ∈ D and let r > 0 be such that P (q, 3r) ⊂⊂ D.
We claim that Lp norms of uj in P (q, r

2
) are bounded. Suppose to the contrary that they

are not. Let us choose a subsequence jk such that ‖ ujk ‖Lp(P (q, r
2

))−→ ∞. We know
that ujk ’s are locally uniformly bounded from above, cf. Theorem 3.2.13 in [Hö07], so we
may assume that u and ujk ’s are non positive in P (q, 3r). It is possible to find a point
q′ within r

2
distance from q such that u(q′) > −∞ and lim sup

k→∞
ujk(q

′) = u(q′) since both

this properties hold almost everywhere in D, cf. Theorem 3.2.13 in [Hö07]. We assume
w.l.o.g that lim

k→∞
ujk(q

′) = u(q′) for if not we take a subsequence again. In particular there

exists C > 0 such that ujk(q
′) > −C for any k. This together with the estimate we have

proven shows that the sequence ‖ ujk ‖Lp(P (q′,r)) is bounded. Because we also know that
P (q, r

2
) ⊂ P (q′, r), contradiction with ‖ ujk ‖Lp(P (q, r

2
))→ ∞ is obtained. Fix 1 ≤ p < 2

and observe that for any compact K ⊂ D we have
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∫
K

|uj − u|pdL4n =

∫
K

|uj − u|
2−p
2 |uj − u|

3p−2
2 dL4n

≤
(∫

K

|uj − u|(
2−p
2

)( 2
2−p )dL4n

)( 2−p
2

)(∫
K

|uj − u|(
3p−2

2
)( 2
p

)dL4n

) p
2

=

(∫
K

|uj − u|dL4n

)( 2−p
2

)(∫
K

|uj − u|(3−
2
p

)dL4n

) p
2

by Hölder’s inequality. By the assumption the first term tends to zero while the second
one is bounded since 1 ≤ 3 − 2

p
< 2. This proves that uj tend to u in Lploc(D) for any

1 ≤ p < 2.

In contrast, the following proposition was proven in [WW17], one can verify it the way
the Proposition 5.3.2 is checked.

Proposition 4.6.2. [WW17] The function

f(q) = − 1

‖ q ‖2

is the fundamental solution for the quaternionic Monge-Ampère operator in Hn. More
precisely

(∂∂Jf)n =
2nπ2nn!

(2n)!
δ0.

We see that the fundamental solution to the quaternionic Monge-Ampère equation
is in Lploc(Hn) for any p < 2n while a generic qpsh function only for p < 2 which is in
contrast with the case of the mentioned classes of functions associated to the real and
complex m−Hessian equations.
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Part II

Local case
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Chapter 5

Weak solutions to the Dirichlet
problem

In this section we aim to solve the Dirichlet problem
u ∈ QPSH(D) ∩ C(D),

(∂∂Ju)n = fΩn in D,

u|∂D = φ,

(II.5.1)

where f ∈ Lq(D) for q > 2, φ ∈ C(∂D) and D ⊂ Hn is a smoothly bounded strictly
quaternionic pseudoconvex domain, which is a global assumption for D in this part. It
was done originally in [Sr18]. Let us mention that the Dirichlet problem for the complex
Monge-Ampère equation with densities in Lp for p > 1 was solved by Ko lodziej in [K96]
refining the earlier result of Bedford and Taylor [BT76] for the continuous data. In fact
Ko lodziej proved the result for densities in appropriate Orlicz spaces being subspaces of
L1 and in particular cases reducing to Lp. For the real Monge-Ampère equation one can
always solve the above problem for any density in L1, cf. [Al58, RT77]. For the more
general m−Hessian equations we refer to [DK14] for the complex case and to [TW99,
TW02] for the real one. The sharp estimates for the exponent are known for those
equations as well.

5.1 Volume–capacity comparison

The first goal is to compare complex and quaternionic Monge-Ampère operators. We
start with smooth functions. In this case we have to compare the determinants of the
complex and quaternionic Hessians. The idea of performing such a comparison originates
with Cheng and Yau. This was noted in [CP92] where using their idea Cegrell and
Persson compared the complex and real Monge-Ampère operators. Real and quaternionic
Monge-Ampère operators were compared by Wan in [W20]. Let us recall that we have
distinguished the set PSH(D) of plurisubharmonic functions in D by identifying Hn with
C2n via a chart introduced in Chapter 2.

Lemma 5.1.1. For a function u ∈ PSH(D) ∩ C2(D) ⊂ QPSH(D) the following holds(
det( ∂2u

∂ql∂qk
)
)2

≥ 42n det( ∂2u
∂zi∂zj

).
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Proof. Let us recall that

Hess(u,C) =

(
∂2u

∂zi∂zj

)
i,j=0,...,2n−1

,

Hess(u,H) =

(
∂2u

∂ql∂qk

)
l,k=0,...,n−1

.

Note that

det

(
∂2u

∂zi∂zj

)
i,j=0,...,2n−1

= detHess(u,C) = detHess(u,C) = det

(
∂2u

∂zi∂zj

)
i,j=0,...,2n−1

.

The last matrix is Hermitian positive since it is just Hess(u,C)T . For

Hess(u,H) = G+ jH

we defined

Ψn (Hess(u,H)) =

(
G −H
H G

)
.

By Lemma 4.1.9 we obtain
Ψn (Hess(u,H))

= 4

([
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
]
l,k

[
−∂z2l+1

∂z2ku+ ∂z2l∂z2k+1
u
]
l,k[

∂z2l+1
∂z2ku− ∂z2l∂z2k+1

u
]
l,k

[
∂z2l∂z2ku+ ∂z2l+1

∂z2k+1
u
]
l,k

)

= 4

(
[∂z2l∂z2ku]l,k

[
∂z2l∂z2k+1

u
]
l,k[

∂z2l+1
∂z2ku

]
l,k

[
∂z2l+1

∂z2k+1
u
]
l,k

)
+ 4

([
∂z2l+1

∂z2k+1
u
]
l,k

[
−∂z2l+1

∂z2ku
]
l,k[

−∂z2l∂z2k+1
u
]
l,k

[∂z2l∂z2ku]l,k

)
.

Following [CP92] we introduce three matrices

A = [∂z2l∂z2ku]l,k, B =
[
∂z2l+1

∂z2ku
]
l,k

, C =
[
∂z2l+1

∂z2k+1
u
]
l,k

.

Under this notation

Ψn (Hess(u,H)) = 4

(
A B

T

B C

)
+ 4

(
C −B
−BT A

)
.

Note that (
A B

T

B C

)
is the conjugate of a Hessian of u with respect to the coordinates z0, ..., z2n−2, z1, ...,
z2n−1 so it is Hermitian positive as well. Moreover

det
(

∂2u
∂zi∂zj

)
= det

(
A B

T

B C

)
.

Consider the matrix In from Chapter 2

In =

(
0 −idn
idn 0

)
with the inverse

I−1
n =

(
0 idn
−idn 0

)
and the determinant equal to one. Note that
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In

(
C −B
−BT A

)
I−1
n =

(
A BT

B C

)
.

The last matrix is the conjugate of the one just shown to be Hermitian positive, as such
it is also Hermitian positive. Consequently(

C −B
−BT A

)
is positive as being similar to the one of that kind. Now we use the equality between
Moore’s determinant of a matrix M and the normalized Pfaffian of an associated complex
matrix InΨn(M) due to Definition 2.4.2. In case of the original definition for the Moore’s
determinant this equality was proved in [Dy70]. This results in(

det

(
∂2u

∂ql∂qk

))2

= det Ψn

(
Hess(u,H)

)
= 42n det

((
A B

T

B C

)
+

(
C −B
−BT A

))

≥ 42n det

(
A B

T

B C

)
= 42n det

( ∂2u

∂zi∂zj

)
as we desired to prove.

The announced comparison of quaternionic and complex Monge-Ampère operators,
for non-smooth functions, follows from the approximation procedure.

Theorem 5.1.2. If u ∈ PSH(D) ∩ C(D) satisfy the equation

(ddcu)2n = f 242nω2n

for some non-negative f ∈ Lp(D) and p > 2 then

(∂∂Ju)n ≥ fΩn.

Proof. Since the property is local we may assume that D is strictly pseudoconvex, other-
wise we argue as below but for some ball contained in D. Approximate f by a sequence
of smooth positive functions fi in Lp norm and u uniformly by a sequence of smooth
functions φi on ∂D. Let us solve the family of Dirichlet problems

ui ∈ PSH(D) ∩ C∞(D)

(ddcui)
2n = f 2

i 42nω2n

ui = φi on ∂D

which is possible due to [CKNS85]. Observe that ui converge uniformly to u due to stabil-
ity of solutions for the complex Monge-Ampère equation, cf. [DK14]. From Proposition
4.1.8, Remark 4.1.10 and Lemma 5.1.1

(∂∂Jui)
n = 1

4n
det
(

∂2ui
∂ql∂qk

)
Ωn ≥

√
det( ∂2ui

∂zm∂zn
)Ωn = fiΩ

n

as measures. Right hand sides converge, as measures, to fΩn
n and left ones converge to

(∂∂Ju)n since the convergence of ui is uniform what ends the proof.
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Now we are going to prove an inequality between the Lebesgue measure and quater-
nionic capacity. This was an essential component of Ko lodziej’s proof of solvability
of the complex Monge-Ampère equation for densities in appropriate Orlicz spaces, cf.
[K96, K05]. Originally, i.e. in the complex setting, this inequality was proven with the
usage of the other - Siciak capacity. It exploits some exceptional properties of subhar-
monic functions in R2. It is of interest to know whether one could introduce the analog
of this capacity for the quaternionic Monge-Ampère operator and prove comparison ap-
plying Ko lodziej’s original approach. Similar inequality for the capacity associated to the
complex m−Hessian operator was proven in [DK14] with the usage of an observation that
psh functions, although being an extremal example of m−subharmonic ones, still realize
the m−Hessian capacity. Here we couple that trick with the comparison of quaternionic
and complex Monge-Ampère operators proved in Theorem 5.1.2.

Lemma 5.1.3. For a fixed p ∈ (1, 2) there exists a constant C(p,R) such that for any
D ⊂ B(0, R) and any Borel set E ⊂ D

L4n(E) ≤ C(p,R)capp(E,D).

Proof. We show the assertion firstly for the compact sets K ⊂ D. Suppose that L(K) 6= 0
otherwise there is nothing to prove. Take any ε ∈ (0, 1

2
) and consider

f = L(K)2ε−1χK .

Let us solve the Dirichlet problem
u ∈ PSH(B) ∩ C(B)

(ddcu)2n = f42nω2n

u = 0 on ∂B

which is possible due to [C84]. By Theorem 5.1.2 the quaternionic Monge-Ampère oper-
ator of the solution u satisfies

(∂∂Ju)n ≥
√
fΩn.

Take q = 1 + ε, one checks that∫
B

f q
(
42n(2n)!

)q
dL4n =

(
42n(2n)!

)q L(K)(2ε−1)(1+ε)+1

=
(
42n(2n)!

)q L(K)2ε2+ε ≤
(
42n(2n)!

)2
R4n,

i.e. the Lq norm of f is bounded by a quantity depending only on R. By Ko lodziej’s L∞

estimate, cf. [K96, K98], there exists a constant c(ε, R) such that

‖ u ‖L∞(B)≤
1

c(ε, R)
.

Put v = c(ε, R)u, then since v is a qpsh function such that −1 ≤ v ≤ 0

cap(K,D) ≥
∫
K

(∂∂Jv)n ≥ n!c(ε, R)n
(
L4n(K)

) 2ε+1
2

and consequently (
1

n!c(ε, R)n

) 2
2ε+1

cap
2

2ε+1 (K,D) ≥ L4n(K).

This gives the claim since when ε vary in (0, 1
2
) the exponent 2

2ε+1
vary in (1, 2).

Having the claim shown for compact sets the inequality follows easily, by taking the
supremum, for any Borel set with the same constant.
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5.2 Local C0 estimate and stability of solutions

In the previous chapter we have proven that any qpsh function belongs to Lp for p < 2
locally and that this is the optimal exponent. The lemma below gives the estimates on
capacity and volume of sub-level sets for certain qpsh functions. In particular it shows
that in the case of u ∈ QPSH(D) bounded near the boundary of D the local integrability
of |u|p is ensured for p < 2n. Again this bound is optimal as the example of − 1

‖q‖2 shows.
Consequently for such a function we can exclude the phenomenon about integrability of
qpsh functions found in the previous chapter.

Lemma 5.2.1. Let u ∈ QPSH(D) ∩ L∞loc(D) be such that

lim inf
q→q0

(u(q)− v(q)) ≥ 0

for any q0 ∈ ∂D and some fixed v ∈ QPSH(D) ∩ C(D). Then for any p ∈ (1, 2) there
exists a constant C(p, diam(D)), depending only on p and the diameter of D, such that
for the sets

U(s) = {u < v − s} ⊂ D

we have

cap(U(s), D) ≤
∫
D

(∂∂Ju)n

sn
,

L4n(U(s)) ≤ C(p, diam(D))

∫
D

(∂∂Ju)n

spn
.

Proof. Take ε > 0 and a compact K ⊂ U(s). By definition one can find

w ∈ QPSH(D) ∩ L∞loc(D)

such that −1 ≤ w ≤ 0 and ∫
K

(∂∂Jw)n ≥ cap(K,D)− ε.

Due to the way we have chosen K and the comparison principle, cf. Theorem 4.3.8,

cap(K,D)− ε ≤
∫
K

(∂∂Jw)n ≤
∫
{u
s
< v
s
−1}

(∂∂Jw)n ≤
∫
{u
s
< v
s

+w}
(∂∂Jw)n

≤
∫
{u
s
< v
s

+w}

(
∂∂J(

v

s
+ w)

)n
≤ 1

sn

∫
{u
s
< v
s

+w}
(∂∂Ju)n ≤

∫
D

(∂∂Ju)n

sn
.

Letting ε tend to 0 and taking the supremum over all compacts K we obtain the first
claim. The second one follows from Lemma 5.1.3.

The next goal is to prove the a priori L∞ estimate for the continuous solutions of the
Dirichlet problem (II.5.1). This is the main result of this section whose proof is different
from the one in the complex case. Firstly, note that by the result on the Dirichlet problem
(II.5.1) with a continuous density and continuous boundary values, cf. [A03b, HL09c,
HL20], we can find v solving 

(∂∂Jv)n = 0,

v|∂D = φ,

v ∈ C(D).

(II.5.2)
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By the characterization of the maximality of qpsh functions, as in [WZ15], this is the
maximal qpsh function matching our boundary condition. For such a fixed v we define

U(s) = {u < v − s} ⊂ D (II.5.3)

for the rest of this chapter and introduce the function

b(s) =
(
cap(U(s), D)

) 1
n
. (II.5.4)

Theorem 5.2.2. There exists a constant

C
(
q, ‖ f ‖Lq(D), ‖ φ ‖L∞(∂D), diam(D)

)
,

depending on q, ‖ f ‖Lq(D), ‖ φ ‖L∞(∂D) and diam(D), such that any solution u of the
Dirichlet problem 

u ∈ QPSH(D) ∩ C(D)

(∂∂Ju)n = fΩn

u|∂D = φ

for φ ∈ C(∂D), f ∈ Lq(D) and q > 2, satisfies

‖ u ‖L∞(D)≤ C.

Proof. Take any s ≥ 0, t ∈ [0, 1] and w ∈ QPSH(D) such that 0 ≤ w ≤ 1. Then

tn
∫

U(s+t)

(∂∂Jw)n =

∫
U(s+t)

(∂∂J(tw − t− s))n =

∫
{u<v−s−t}

(∂∂J(tw − t− s))n

≤
∫

{u<v−s+tw−t}

(∂∂J(tw − t− s))n ≤
∫

{u<v−s+tw−t}

(∂∂J(v + tw − t− s))n

≤
∫

{u<v−s+tw−t}

(∂∂Ju)n ≤
∫

{u<v−s}

(∂∂Ju)n =

∫
U(s)

(∂∂Ju)n

due to inclusions of appropriate sets, superadditivity and the comparison principle, cf.
Theorem 4.3.8. To conclude

tn(b(s+ t))n ≤
∫
U(s)

(∂∂Ju)n.

Estimating the right hand side gives

∫
U(s)

(∂∂Ju)n =

∫
U(s)

fΩn ≤ ‖ f ‖Lq(D)

∫
U(s)

1dL4n


1
q′

≤‖ f ‖Lq(D) C(p, diam(D)) (cap(U(s), D))
p
q′

=‖ f ‖Lq(D) C(p, diam(D))(b(s))n(1+α(q))
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where we used Hölder’s inequality and Lemma 5.1.3, p depends only on q′ which is the
conjugate of q and we choose it so that p

q′
> 1. This reassembles to

tb(s+ t) ≤ A
(
q, ‖ f ‖Lq(D), diam(D)

)
(b(s))1+α(q)

for any s ≥ 0 and t ∈ [0, 1].
We would like to apply the De Giorgi lemma, stated below, for the function b. Let

us just note that the condition (a) from the lemma is satisfied since for sn ↘ s the sets
U(sn)↗ U(s) and under such an assumption cap(U(sn), D)→ cap(U(s), D), cf. [WK17].
The condition (b) follows from the first assertion of Lemma 5.2.1 as well as the dependence
of s0 only on q, ‖ f ‖Lq(D) and diam(D). Indeed, it was proven in Lemma 5.2.1 that

bα(q)(s) = cap(U(s), D)
α(q)
n ≤

(∫
D

(∂∂Ju)n
)α(q)

n

sα(q)

=
‖ f ‖

α(q)
n

L1(D)

sα(q)
≤
c
(
q, ‖ f ‖Lq(D), diam(D)

)
sα(q)

so surely

s0 ≤ (2Ac)
1

α(q)

and this estimate depends only on q, ‖ f ‖Lq(D) and diam(D). By Lemma 5.2.3 there
exists

S
(
q, ‖ f ‖Lq(D), diam(D)

)
such that b(s) = 0 for any

s > S
(
q, ‖ f ‖Lq(D), diam(D)

)
.

This together with Lemma 5.1.3 gives our claim since then

‖ u ‖L∞≤ sup|φ|+ S
(
q, ‖ f ‖Lq(D), diam(D)

)
= C

(
q, ‖ f ‖Lq(D), ‖ φ ‖L∞(∂D), diam(D)

)
.

The technical result used above is the lemma below. It was used implicitly back in
[K96], since then it turned out to be very useful while performing pluripotential estimates.
Its form below is a combination of Lemma 1.5 in [GKZ08] and Lemma 2.4 in [EGZ09]. In
[PSS12] it was attributed to De Giorgi. It is not so easy to find a reference with a correct
statement and proof all together.

Lemma 5.2.3 (De Giorgi). Let f : [0,∞)→ [0,∞] satisfy the following conditions:
(a) f is right–continuous and non-increasing;
(b) lim

x→∞
f(x) = 0;

(c) there exist positive constants α, B such that for any s ≥ 0 and t ∈ [0, 1]

(∗) tf(t+ s) ≤ Bf(s)1+α.

Then there exists s∞, depending on α, B and s0 such that f(s0) ≤ 1
2B

, satisfying f(s) = 0

for any s ≥ s∞. In fact one can choose s∞ to be equal to s0 + 2Bf(s0)α

1−2−α
.

If in addition (∗) holds for all s, t ≥ 0 then one can take even s∞ = 2Bf(0)α

1−2−α
.
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Proof. Fix any s0 such that f(s0)α ≤ 1
2B

. Define inductively sj unless f(sj−1) = 0 as

sj = sup{s > sj−1 | f(s) >
f(sj−1)

2
}.

For any s > sj we have f(s) ≤ f(sj−1)

2
so from right continuity f(sj) ≤ f(sj−1)

2
and sj is

the smallest time for which this happens. From (∗) it follows that sj ≤ 1 + sj−1. For any
s ∈ (sj−1, sj)

(s− sj−1)f(s) ≤ Bf(sj−1)1+α < 2Bf(s)f(sj−1)α

since f(s) 6= 0 we conclude that

s− sj−1 < 2Bf(sj−1)α

for s ∈ (sj−1, sj), consequently

sj − sj−1 ≤ 2Bf(sj−1)α ≤ 2Bf(s0)α

2α(j−1) .

This show that one can take

s∞ = s0 +
∞∑
j=1

(sj − sj−1) ≤ s0 +
∞∑
j=1

2Bf(s0)α

2α(j−1) = s0 + 2Bf(s0)α

1−2−α
.

Since s∞ ≥ sj for all j and f(sj) ≤ f(s0)
2j

it follows that f(s) = 0 for all s ≥ s∞.
For the proof of the second assertion firstly observe that we may assume f(0) 6= ∞

since otherwise there is nothing to prove. We define sj’s inductively as before but starting
from s0 = 0. This time we do not know that sj ≤ 1 + sj−1 but we do not need that since
(∗) holds for all t. The claim then follows from the same argument as above.

The L∞ estimate allows us to prove the stability of solutions to the Dirichlet problem
(II.5.1) in terms of the densities and boundary values. This will be needed for the proof
of solvability of the Dirichlet problem (II.5.1) but is, of course, a result interesting in its
own right. As we were told by S lawomir Dinew the idea of proving stability in the way
presented in Proposition 5.2.5 is due to N. C. Nguyen. We start with a simple lemma.

Lemma 5.2.4. There exists a constant C(q,diam(D)), depending on q and diam(D), such
that any solution u of the Dirichlet problem

u ∈ QPSH(D) ∩ C(D)

(∂∂Ju)n = fΩn

u|∂D = 0

for f ∈ Lq(D) and q > 2, satisfies

‖ u ‖L∞(D)≤ C(q, diam(D)) ‖ f ‖
1
n

Lq(D) .

Proof. Suppose that ‖ f ‖Lq(D) 6= 0, otherwise there is nothing to prove. The function

v := u

‖f‖
1
n
Lq(D)

solves the Dirichlet problem 
v ∈ QPSH(D) ∩ C(D)

(∂∂Jv)n = f
‖f‖Lq(D)

Ωn

v|∂D = 0

.
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By Theorem 5.2.2 there exists a constant

C(q, diam(D)) := C(q, 1, 0, diam(D))

such that

‖ v ‖L∞(D)≤ C(q, diam(D)),

this gives the claim.

Proposition 5.2.5. There exists a constant C(q,diam(D)) such that if u and v satisfy
u ∈ QPSH(D) ∩ C(D)

(∂∂Ju)n = fΩn

u|∂D = φ ∈ C(∂D)

and


v ∈ QPSH(D) ∩ C(D)

(∂∂Jv)n = gΩn

v|∂D = ψ ∈ C(∂D)

,

for f, g ∈ Lq(D) and q > 2, then

‖ u− v ‖L∞(D)≤ sup
∂D
|φ− ψ|+ C(q, diam(D)) ‖ f − g ‖

1
n

Lq(D).

Proof. Consider a function w being the solution of
w ∈ QPSH(D) ∩ C(D)

(∂∂Jw)n = (f − g)+Ωn

w|∂D = 0

.

Note that on ∂D we have w + v + inf(φ− ψ) ≤ u while

(∂∂J (w + v + inf(φ− ψ)))n ≥ (f − g)+ + g ≥ f = (∂∂Ju)n.

From the comparison principle, cf. Theorem 4.3.8,

w + v + inf(φ− ψ) ≤ u

in D which, by Lemma 5.2.4, results in

u− v ≥ w + inf(φ− ψ)

≥ −C(q, diam(D)) ‖ (f − g)+ ‖
1
n

Lq(D) − sup |φ− ψ|

≥ −C(q, diam(D))‖ f − g ‖
1
n

Lq(D) − sup |φ− ψ|.

The same reasoning gives

v − u ≥ −C(q, diam(D)) ‖ f − g ‖
1
n

Lq(D) − sup |φ− ψ|.

This reassembles to our claim.

Remark 5.2.6. Note that proofs of both the L∞ estimate and the stability relies in [K05]
on Theorem 4.3 therein. As we have seen above, in this context, that theorem is essentially
equivalent to Lemma 5.2.3. This was noted before in [PSS12, K17].
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We prove another version, Theorem 5.2.8, of the stability estimate for the quaternionic
Monge-Ampère equation – Theorem 5.2.5 above. It will not be of any use for the proof
of the solvability of the Dirichlet problem (II.5.1) but it will be of an essential use in the
next chapter. This result was proven in [KS20]. To be more precise, above we have shown
that the uniform norm of the difference of solutions of (II.5.1) is under control by the
uniform norm of the difference of boundary data and the Lq norm of the difference of the
Monge-Ampère densities when they belong to Lq for q > 2. Our goal now is to prove that
the uniform norm of the difference of solutions of (II.5.1) is under control by the Lp norm
of that difference for appropriate p, cf. Theorem 5.2.8 below. From now on, whenever
u ∈ QPSH(D) is locally bounded then writing ‖ (∂∂Ju)n ‖p automatically implies that
we assume that the Borel measure (∂∂Ju)n has a density with respect to the Lebesgue
measure L4n and this density is in Lp(D).

We show the main technical fact needed for the proof of the announced Theorem
5.2.8. The reasoning we perform in the rest of the section is based on the one presented
in [GKZ08].

Proposition 5.2.7. Fix c0 > 0 and p > 2. Let u, v ∈ QPSH(D) ∩ L∞loc(D) be such that

lim inf
q→q0

(u− v)(q) ≥ 0 for any q0 ∈ ∂D,

‖ (∂∂Ju)n ‖Lp(D)≤ c0.

For any 0 < α < p−2
np

there exists a constant C(c0, α, diam(D)), depending on c0, α and
the diameter of D, such that for any ε > 0

sup(v − u) ≤ ε+ C(c0, α, diam(D)) (cap({u− v < −ε}, D))α .

Proof. Define
Uε(s) = {u− v < −ε− s},

bε(s) = (cap(Uε(s), D))
1
n

for s ≥ 0 and ε > 0. Firstly note that for all t, s ≥ 0, ε > 0 and w ∈ QPSH(D) such
that 0 ≤ w ≤ 1 one obtains from inclusions of sets, superadditivity and the comparison
principle, cf. Theorem 1.2 in [WZ15],

tn
∫

Uε(s+t)

(∂∂Jw)n =

∫
Uε(s+t)

(∂∂J(tw − t− s− ε))n =

∫
{u<v−s−t−ε}

(∂∂J(tw − t− s− ε))n

≤
∫

{u<v−s+tw−t−ε}

(∂∂J(tw − t− s− ε))n ≤
∫

{u<v−s+tw−t−ε}

(∂∂J(v + tw − t− s− ε))n

≤
∫

{u<v−s+tw−t−ε}

(∂∂Ju)n ≤
∫

{u<v−s−ε}

(∂∂Ju)n =

∫
Uε(s)

(∂∂Ju)n.

From the Hölder inequality we obtain∫
Uε(s)

(∂∂Ju)n ≤ ‖ (∂∂Ju)n ‖Lp(D)

(
L4n(Uε(s))

) 1
p′

≤ C(q′, diam(D))c0 (cap(Uε(s), D))
q′
p′ = C(c0, α, diam(D))(bε(s))

n(1+nα),
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where q′ ∈ (1, 2) depends only on p′ which is the conjugate of p and we choose it so that
q′

p′
= 1 + nα. Since 1 + nα < 2

p′
this is always possible. Taking the supremum over all w

and n’th root of both sides gives

tbε(s+ t) ≤ C(c0, α, diam(D))(bε(s))
1+nα

for any s, t ≥ 0 and ε > 0. One easily checks, as in the proof of Theorem 5.2.2, that the
function bε satisfies all the assumptions of Lemma 5.2.3. This gives

cap({u− v < −ε− 2C(c0, α, diam(D))

1− 2−nα
bε(0)nα}, D) = 0.

From the comparison of volume and capacity, cf. Lemma 5.1.3, it follows that

v − u ≤ ε+ C(c0, α, diam(D))bε(0)nα

almost everywhere in D. Since u and v are subharmonic we obtain that this holds in D,
i.e.

sup
D

(v − u) ≤ ε+ C(c0, α, diam(D))(cap(Uε(0), D))α.

Theorem 5.2.8. Fix c0 > 0 and p > 2. Let u, v ∈ QPSH(D) ∩ L∞loc(D) be such that

lim inf
q→q0

(u− v)(q) ≥ 0 for any q0 ∈ ∂D,

‖ (∂∂Ju)n ‖Lp(D)≤ c0.

For any r ≥ 1 and

0 < γ <
r

r + np′ + p′np
p−2

:= γr

there exists a constant C(c0, γ, diam(D)), depending only on c0, γ and the diameter of D,
such that

sup
D

(v − u) ≤ C(c0, γ, diam(D)) ‖ (v − u)+ ‖γLr(D) .

Proof. First of all we may assume that ‖ (v − u)+ ‖Lr(D) 6= 0 because otherwise the
inequality holds with any constant C(c0, γ, diam(D)). Arguing as in the beginning of the
proof of Proposition 5.2.7 we obtain for any ε > 0

cap({u− v < −2ε}, D) ≤ ε−n
∫

{u−v<−ε}

(∂∂Ju)n.

Since on the set {u− v < −ε} the function((
v − u
ε

)
+

) r
p′

is bigger than 1, due to Hölder’s inequality we may further estimate

ε−n
∫

{u−v<−ε}

(∂∂Ju)n ≤ ε
−n− r

p′

∫
D

(v − u)
r
p′
+ (∂∂Ju)n
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≤ ε
−n− r

p′ ‖ (∂∂Ju)n ‖Lp(D)


∫
D

((v − u)+)r

 1
r


r
p′

≤ ε
−n− r

p′ ‖ (∂∂Ju)n ‖Lp(D) ‖ (v − u)+ ‖
r
p′

Lr(D)≤ ε
−n− r

p′ c0 ‖ (v − u)+ ‖
r
p′

Lr(D) .

Applying Proposition 5.2.7 we get

sup
D

(v − u)

≤ 2ε+ C(c0, α, diam(D)) (cap({u− v < −2ε}, D))α

≤ 2ε+ C(c0, α, diam(D))ε
−αn− rα

p′ cα0 ‖ (v − u)+ ‖
rα
p′

Lr(D)

for any 0 < α < p−2
np

. Putting

ε =‖ (v − u)+ ‖γLr(D)

gives

sup
D

(v − u)

≤ 2 ‖ (v − u)+ ‖γLr(D) +C(c0, α, diam(D))cα0 ‖ (v − u)+ ‖
γα(−n− r

p′ )+
rα
p′

Lr(D) .

Choosing α such that

γ =
r

r + np′ + p′

α

,

which is always possible since when α varies in(
0,
p− 2

np

)
the quantity

r

r + np′ + p′

α

varies in (0, γr), results in

sup
D

(v − u) ≤ C(c0, γ, diam(D)) ‖ (v − u)+ ‖γLr(D)

because

γα(−n− r

p′
) +

rα

p′
= γ

(
−αn− αr

p′
+
rα

γp′

)

= γ

(
−αn− αr

p′
+
α

p′

(
r + np′ +

p′

α

))
= γ.
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5.3 Solving the Dirichlet problem

Theorem 5.3.1. [Sr18] The Dirichlet problem
(∂∂Ju)n = fΩn

u|∂D = φ

u ∈ QPSH(D) ∩ C(D)

in a smoothly bounded quaternionic strictly pseudoconvex domain D for f ∈ Lq(D), q > 2
and φ ∈ C(∂D) has a unique solution.

Proof. The uniqueness follows from the comparison principle – Theorem 4.3.8. For the
solvability we take a sequence of continuous non-negative functions fi converging to f
in Lq(D). Solving Dirichlet problems for them with our boundary condition, which is
possible due to [A03b, HL09c, HL20], gives a sequence of continuous solutions ui. Since,
by Proposition 5.2.5, these solutions constitute a Cauchy sequence, in the uniform norm, it
follows that ui converge uniformly to some u, necessarily being qpsh. This is the solution
we were looking for because of the convergence of the Monge-Ampère masses under the
uniform convergence of functions as one can easily show from the definition, by induction
for the currents (∂∂Jui)

k for k = 1, ..., n, or by adding appropriate constants one can take
a subsequence converging monotonically to u and apply Theorem 3.1 in [WW17].

The example below shows that the exponent two is optimal in this result, in the sense
that for densities from Lp(D) with p < 2 solutions may not even be bounded.

Proposition 5.3.2. Let

f : Hn 3 q 7−→ log
(
‖ q ‖

)
∈ R.

It belongs to QPSH(Hn) and

(∂∂Jf)n =
n!

2 ‖ q ‖2n
Ωn.

Proof. We compute for

fε(q) =
1

2
log
(
‖ q ‖2 +ε

)
.

∂∂Jfε = ∂

(
2n−1∑
i=0

(−1)i+1(∂zi+(−1)i
fε)dzi

)
=

1

2
∂

(
2n−1∑
i=0

(−1)i+1 zi+(−1)i

‖ q ‖2 +ε
dzi

)

=
1

2

(
2n−1∑
i=0,j=0

(−1)i+1
δj
i+(−1)i

(‖ q ‖2 +ε)− zi+(−1)izj

(‖ q ‖2 +ε)2
dzj ∧ dzi

)

=
1

2

(
2n−1∑
i>j

(
(−1)i+1

δj
i+(−1)i

(‖ q ‖2 +ε)− zi+(−1)izj

(‖ q ‖2 +ε)2

−(−1)j+1
δij+(−1)j(‖ q ‖2 +ε)− zj+(−1)jzi

(‖ q ‖2 +ε)2

)
dzj ∧ dzi

)

=
1

2

(
2n−1∑
i>j

(
2δj
i+(−1)i

(‖ q ‖2 +ε) + (−1)izi+(−1)izj + (−1)j+1zj+(−1)jzi

(‖ q ‖2 +ε)2

)
dzj ∧ dzi

)
.

69

69:6491884366



Let us denote by
Mij = (−1)izi+(−1)izj + (−1)j+1zj+(−1)jzi,

as in [WW17], and let
δj1i1,...,jnin0,...,2n−1

be the sign of the permutation

(j1, i1, ..., jn, in)→ (0, 1, ..., 2n− 1).

With this notation we see that

2n(‖ q ‖2 +ε)2n(∂∂Jfε)
n

=


∑

j1,i1,...,jn,in:
{j1,i1,...,jn,in}={0,...,2n−1}

il>jl, l∈{1,...,n}

δj1i1,...,jnin0,...,2n−1

∏
l∈{1,...,n}

(
2δjl
il+(−1)il

(‖ q ‖2 +ε) +Miljl

)
Ωn

=

((
n

0

) ∑
{k1,...,kn}={0,...,n−1}

δ
(2k1)(2k1+1),...,(2kn)(2kn+1)
0,...,2n−1 2n(‖ q ‖2 +ε)n

+

(
n

1

) ∑
{j1,i1,2k2,2k2+1,...,2kn,2kn+1}={0,...,2n−1}

i1>j1
kl∈{0,...,n−1}

δ
j1i1,...,(2kn)(2kn+1)
0,...,2n−1 2n−1(‖ q ‖2 +ε)(n−1)Mi1j1

+

(
n

2

) ∑
{j1,i1,j2,i2,...,2kn,2kn+1}={0,...,2n−1}

i1>j1,i2>j2
kl∈{0,...,n−1}

δ
j1i1,j2,i2,...,(2kn)(2kn+1)
0,...,2n−1 2n−2(‖ q ‖2 +ε)(n−2)Mi1j1Mi2j2

+...

+

(
n

n

) ∑
{j1,i1,...,jn,in}={0,...,2n−1}

il>jl, l∈{1,...,n}

δj1i1,...,jnin0,...,2n−1

∏
l∈{1,...,n}

Miljl

)
Ωn.

Note that for fixed indices j3, i3, ..., jn, in the expression

M ′
j3,i3,...,jn,in

=
∑

j1,i1,j2,i2:
{j1,i1,j2,i2,...,2kn,2kn+1}={0,...,2n−1}

i1>j1,i2>j2

δj1i1,...,jnin0,...,2n−1 Mi1j1Mi2j2

vanishes, as was already noticed in [WW17] for the purpose of computing the fundamental
solution to the quaternionic Monge-Ampère operator. To see this let

{0, ..., 2n− 1} \ {j3, i3, ..., jn, in} = {k, l,m, n}

for k > l > m > n. Then

1

2
M ′

j3,i3,...,jn,in

= δlk,nm,j3i3,...,jnin0,...,2n−1 MklMmn + δmk,nl,j3i3,...,jnin0,...,2n−1 MkmMln + δnk,ml,j3i3,...,jnin0,...,2n−1 MknMlm
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= δlk,nm,j3i3,...,jnin0,...,2n−1 (MklMmn −MkmMln +MknMlm)

= ±
((

(−1)kzk+(−1)kzl + (−1)l+1zl+(−1)lzk
)(

(−1)mzm+(−1)mzn + (−1)n+1zn+(−1)nzm
)

−
(
(−1)kzk+(−1)kzm + (−1)m+1zm+(−1)mzk

)(
(−1)lzl+(−1)lzn + (−1)n+1zn+(−1)nzl

)
+
(
(−1)kzk+(−1)kzn + (−1)n+1zn+(−1)nzk

)(
(−1)lzl+(−1)lzm + (−1)m+1zm+(−1)mzl

))
= ±

(
(−1)k+m+1zk+(−1)kznzm+(−1)mzl + (−1)k+mzk+(−1)kzlzm+(−1)mzn

+(−1)l+m+1zl+(−1)lzkzm+(−1)mzn + (−1)m+lzm+(−1)mzkzl+(−1)lzn

+(−1)k+l+1zk+(−1)kzmzl+(−1)lzn + (−1)k+lzk+(−1)kznzl+(−1)lzm

+(−1)k+n+1zk+(−1)kzlzn+(−1)nzm + (−1)k+nzk+(−1)kzmzn+(−1)nzl

+(−1)m+n+1zm+(−1)mzkzn+(−1)nzl + (−1)n+mzn+(−1)nzkzm+(−1)mzl

+(−1)n+l+1zn+(−1)nzkzl+(−1)lzm + (−1)l+nzl+(−1)lzkzn+(−1)nzm

)
= 0.

Because of that only the first two summands of the expression for (∂∂Jfε)
n do not vanish.

We are left with
(∂∂Jfε)

n

=
1

2n(‖ q ‖2 +ε)2n

(
n!2n(‖ q ‖2 +ε)n − n!2n−1(‖ q ‖2 +ε)(n−1) ‖ q ‖2

)
Ωn

=
n!(‖ q ‖2 +2ε)

2(‖ q ‖2 +ε)n+1
Ωn.

Finally since the measures (∂∂Jfε)
n converge weakly to (∂∂Jf)n, cf. Theorem 3.1 in

[WW17], it is enough to find the weak limit of

n!(‖ q ‖2 +2ε)

2(‖ q ‖2 +ε)n+1

which by
n!(‖ q ‖2 +2ε)

2(‖ q ‖2 +ε)n+1
≤ n!

2 ‖ q ‖2n

and Lebesgue’s Dominated Convergence Theorem equals

n!

2 ‖ q ‖2n
.
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Chapter 6

Regularity of solutions

In this chapter we proceed to proving regularity of solutions to the Dirichlet problem for
the quaternionic Monge-Ampère equation under the conditions on the boundary data and
the density. This is the contents of Theorem 6.5. For that goal we firstly consider a more
general situation in Theorem 6.1 below and then check that under the assumptions of
Theorem 6.5 one can apply Theorem 6.1. All the results are taken from [KS20]. For this
chapter for a domain D and α ∈ (0, 1) we use the notation

Lipα
(
D
)

:= C0,α
(
D
)
.

Theorem 6.1. Let D ⊂ Hn be a quaternionic strictly pseudoconvex domain. Suppose
f ∈ Lp(D) for p > 2 is a non-negative function, φ ∈ C(∂D) and u is the solution to the
Dirichlet problem 

u ∈ QPSH(D) ∩ C(D)

(∂∂Ju)n = fΩn

u|∂D = φ

such that ∆u(D) is finite. If there exists 0 < ν < 1 and b ∈ Lipν(D) such that{
b ≤ u in D

b = φ on ∂D

then
u ∈ Lipα(D)

for any 0 ≤ α < min{ν, 2γ1}.

Remark 6.2. Let us just emphasize that in the whole chapter we denote by ∆u, for a
locally bounded u, the distributional Laplacian. Since qpsh functions are in particular
subharmonic for them ∆u is a positive distribution, thus a measure, so it makes sense to
write ∆u(D).

We introduce the notation needed for the proof of this theorem. This approach is
similar to the one presented in [N14]. For a fixed number δ > 0 and a subharmonic u we
consider

Dδ = {q ∈ D | dist(q,D) > δ},

uδ(q) = sup
‖p‖≤δ

u(q + p), for q ∈ Dδ,
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ûδ(q) =
1

L4n(B(0, 1))δ4n

∫
‖q−p‖≤δ

u(p)dL4n(p), for q ∈ Dδ.

The lemma below is a composition of Lemmas 4.2 and 4.3 in [GKZ08]. As was noted by
Nguyen in [N14] proofs given originally in [GKZ08] for plurisubharmonic functions used
only subharmonicity.

Lemma 6.3. [GKZ08] Let u be a subharmonic function in D. For a fixed 0 < α < 1 the
following are equivalent

(i) there exists δ0, A > 0 such that for any 0 < δ ≤ δ0

uδ − u ≤ Aδα in Dδ

(ii) there exists δ1, B > 0 such that for any 0 < δ < δ1

ûδ − u ≤ Aδα in Dδ.

Moreover, there exists a constant c, depending only on the dimension n, such that for all
δ > 0 sufficiently small ∫

Dδ

(ûδ(q)− u(q)) dL4n(q) ≤ c∆u(D)δ2.

Lemma 6.4. Let u and b be as in Theorem 6.1. There exists a constant cn such that for
all δ > 0 and q ∈ ∂Dδ

uδ(q) ≤ u(q) + cnδ
ν.

Proof. Denote by h the harmonic extension of b|∂D to D. By the Proposition 2.4 in [N14]
we know that h ∈ Lipν(D). Fix q ∈ ∂Dδ and take p, p0 ∈ Hn such that ‖ p ‖=‖ p0 ‖= δ,
uδ(q) = u(p + q) and q + p0 ∈ ∂D. Since b ≤ u ≤ h in D, with equalities on ∂D, we
obtain the following string of inequalities

uδ(q)− u(q) = u(p+ q)− u(q) ≤ h(p+ q)− u(q) ≤ h(p+ q)− b(q)

= h(p+ q)− h(q) + h(q)− b(q)
≤‖ h ‖Lipν(D) δ

ν + h(q)− h(q + p0) + b(q + p0)− b(q)

≤
(

2 ‖ h ‖Lipν(D) + ‖ b ‖Lipν(D)

)
δν .

Proof of Theorem 6.1. Fix 0 < γ < γ1 and consider the function

ũδ(q) =

{
max{ûδ(q), u(q) + cnδ

ν} for q ∈ Dδ

u(q) + cnδ
ν for q ∈ D \Dδ

which by Lemma 6.4 is qpsh in D as ûδ ≤ uδ, cf. Proposition 2.1(4) in [WK17], and
continuous in D. Applying Theorem 5.2.8 for u+ cnδ

ν , ũδ and r = 1 we obtain

sup
D

(ũδ − u− cnδν) ≤ C (‖ f ‖p, γ, diam(D)) ‖ (ũδ − u− cnδν)+ ‖γL1(D) .

From the construction of ũδ it follows that the last inequality is equivalent to

sup
Dδ

(ûδ − u− cnδν) ≤ C (‖ f ‖p, γ, diam(D)) ‖ (ûδ − u− cnδν)+ ‖γL1(Dδ)
.
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Estimating further, by Lemma 6.3 and the trivial estimate

(ûδ − u− cnδν)+ ≤ ûδ − u,

we obtain for sufficiently small δ > 0

sup
Dδ

(ûδ − u− cnδν) ≤ cγC (‖ f ‖p, γ, diam(D)) (∆u(D))γ δ2γ.

This results in

sup
Dδ

(ûδ − u) ≤ C(‖ f ‖p, γ, diam(D),∆u(D), c, cn)δmin{ν,2γ}

for all δ sufficiently small. Since the constant C is independent of δ we obtain, again due
to Lemma 6.3, that u ∈ Lipmin{ν,2γ}(D). Since γ was arbitrary in (0, γ1) this gives our
claim.

Theorem 6.5. Let D ⊂ Hn be a quaternionic strictly pseudoconvex domain. Suppose
f ∈ Lp(D) for p > 2 is a non-negative function bounded in a neighborhood of ∂D and
φ ∈ C1,1(∂D). Then the Dirichlet problem

u ∈ QPSH(D) ∩ C(D)

(∂∂Ju)n = fΩn

u|∂D = φ

is solvable and the unique solution is in Lipα(D) for any 0 ≤ α ≤ 2γ1.

Proof. The continuous solution u exists and is unique as was shown in Theorem 5.3.1.
We need to check the assumptions of Theorem 6.1. For that goal we construct a function
b as in Theorem 6.1 having in addition the properties that it is subharmonic and the
Laplacian of it has the finite total mass. This will of course imply that the Laplacian of
u has the finite total mass since b and u, both subharmonic, will agree on ∂D and b ≤ u
in D. Take h to be the solution to the Dirichlet problem

h ∈ QPSH(D) ∩ C(D)

(∂∂Jh)n = 0

h|∂D = φ.

By the comparison principle, cf. Theorem 1.2 in [WZ15], it is above any v ∈ QPSH(D)∩
C(D) such that v|∂D = φ.

We will show that h is Lipschitz in D and its Laplacian has finite total mass in D.
Suppose U is a neighborhood of D such that φ is extendable to a function φ̂ ∈ C1,1(U).
That is always possible due to Lemmas 6.37 and 6.38 in [GT01]. Consider a defining
function ρ of D in the neighborhood V of U , i.e.

ρ ∈ QPSH(V ) ∩ C2(V )

D = {ρ < 0}
ρ|∂D = 0

dρ 6= 0 on ∂D

(∂∂Jρ)n ≥ Ωn on D

.
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We take A big enough such that Aρ+φ̂ and Aρ−φ̂ are inQPSH(U). Note that Aρ+φ̂ ≤ h
in D from the definition of h. This shows that the Laplacian of h has a finite total mass
in D since Aρ+ φ̂ has this property and the function ĥ defined by

ĥ(q) =

{
h(q) for q ∈ D
Aρ(q) + φ̂(q) for q ∈ U \D

belongs to QPSH(U) ∩ C0(U), cf. Proposition 2.1(4) in [WK17]. Take ε > 0 such that

D(ε) = {q ∈ Hn | dist(q,D) < ε} ⊂⊂ U.

For any p ∈ ∂D and q such that ‖ q ‖< ε we have

ĥ(p+ q)

≤ φ̂(p) + max{‖ Aρ± φ̂ ‖C1(U)} ‖ q ‖

= φ(p) + max{‖ Aρ± φ̂ ‖C1(U)} ‖ q ‖

due to the mean value theorem and because ĥ = h ≤ φ̂ − Aρ in D, as the subharmonic
function h− φ̂+ Aρ attains its maximum, equal zero, on the boundary of D. Thus for

C = max{‖ Aρ± φ̂ ‖C1(U)},

every p ∈ ∂D and ‖ q ‖< ε, we have

ĥ(p+ q)− C ‖ q ‖≤ φ(p).

From the properties of h it means that for any ‖ q ‖< ε

ĥ(r + q)− C ‖ q ‖≤ h(r)

for all r ∈ D. Thus for r ∈ D and ‖ q ‖≤ ε such that r + q ∈ D we obtain

ĥ(r + q)− h(r) = h(r + q)− h(r) ≤ C ‖ q ‖,

ĥ(r + q − q)− h(r + q) = h(r)− h(r + q) ≤ C ‖ −q ‖,
what results in

‖ h(r + q)− h(r) ‖≤ C ‖ q ‖
for r ∈ D and ‖ q ‖< ε such that r + q ∈ D. This shows that h is locally Lipschitz
continuous in D and consequently Lipschitz continuous.

By the assumptions for some M > 0 we have f ≤ M away from a compact K ⊂ D.
Let u be the continuous solution to the Dirichlet problem from the statement. Take B
big enough for the function Bρ+ h to be below u in a neighborhood of K and such that
Bn > M . Then by superadditivity(

∂∂J(Bρ+ h)
)n ≥ (∂∂JBρ)n ≥ fΩn

at least in D \K. The comparison principle implies that

Bρ+ h ≤ u

in D \K since the inequality holds on the boundary of this set.
We define b = Bρ + h. It is Lipschitz continuous and its Laplacian has finite total

mass in D since h has these properties.
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Part III

Global case
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Chapter 7

Quaternionic Monge-Ampère
equation on HKT manifolds

7.1 Special hyperhermitian metric

This section is a natural continuation of the discussion carried out in Section 3.2, we keep
the notation from Chapter 3. We wish to recall the two established classes of compatible
metrics for quaternionic geometries discussed there.

Definition 7.1.1. A hyperhermitian metric g on (M, I, J,K) is called hyperKähler, HK
for short, if any of the following, equivalent (for simplicity suppose the manifold is simply
connected), conditions are satisfied

� dωI = dωJ = dωK = 0

� ∇LCωI = ∇LCωJ = ∇LCωK = 0

� Hol(g) ⊂ Sp(m) and I, J,K are induced by this holonomy group

� (M, I, g), (M,J, g), (M,K, g) are Kähler.

Definition 7.1.2. A Riemannian metric g compatible with the quaternionic structure
(M,Q) is called quaternionic Kähler if ∇LCQ ⊂ Q.

Remark 7.1.3. The last definition for dimM = 4 is too general as the quaternionic
Kähler structures in this sense are just oriented Riemannian four manifolds. For this
reason for dimM = 4 one usually defines the notion of quaternionic Kähler structures
separately.

Those classes of metrics are standard to consider from the point of view of Berger’s
holonomy theorem on the irreducible holonomy groups of the metric connection. It fol-
lows from that theorem, with the later improvements, that Sp(n) and Sp(n) · Sp(1),
corresponding respectively to the hyperKähler and quaternionic Kähler metrics, are one
of few infinite families which may occur, cf. [Be87, J00, GHJ03]. Those are the only
occurring groups which correspond to the quaternionic geometries.

We abandon now the quaternionic non-hypercomplex side of the discussion. It is our
objective to define the class of the so called HKT metrics being an intermediate class
between general hyperhermitian and hyperKähler metrics. It is trivial to observe that for
(M, I, J,K, g) being hyperKähler is equivalent to

dΩ = 0.
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Definition 7.1.4. A hyperhermitian metric g on the hypercomplex manifold
(M, I, J,K) is called HKT metric, where the abbreviation comes from hyperKähler with
torsion, if

∂Ω = 0. (III.7.1)

Remark 7.1.5. In this context, the form Ω is called an HKT form associated to an HKT
metric g, via the isomorphism from Proposition 3.2.22. As we noted it is of the type (2, 0)
with respect to I. In [GP00] the definition of an HKT manifold is different. There, it
is a hyperhermitian manifold for which a linear connection preserving g, I, J , K and
having a skew-symmetric torsion tensor, of course after lowering the only upper index,
exists. Due to their characteristic properties, from Section 3.1.1, this is equivalent to
the equality of the three Bismut connections ∇B

I , ∇B
J and ∇B

K for hermitian manifolds
(M, I, g), (M,J, g) and (M,K, g) respectively. These conditions are equivalent to our
definition as shown in Proposition 2 of [GP00]. It was proven there that the condition
(III.7.1) encodes the equality of the torsions of the three mentioned Bismut connections
and, as those are metric connections, they are uniquely determined by the torsion.

These metrics emerged originally from mathematical physics. More exactly special
connections occur naturally while studying the target space of certain sigma models in
quantum theory, cf. [S86, HKLR87]. In the presence of the so called Wess-Zumino term
and sufficient supersymmetry the HKT metrics appear, cf. [HP96]. It is worth noting
that these metrics are interesting from the point of view of the differential geometry as
well. An established mathematical treatment of basic properties of HKT manifolds is
[GP00] which covers the early stage of research. It discusses in particular the relation of
the HKT condition to the equality of the mentioned canonical connections of the induced
hermitian structures and some elementary examples. The remark above demonstrates
also that HKT manifolds are nothing but manifolds with a connection having holonomy
contained in Sp(n) and possessing a skew-symmetric torsion. Such connections appear
naturally in string theory, cf. [S86]. From this description it follows also that HKT
structures are natural differential geometric generalizations of HK structures where the
torsion just vanishes. It is believed that HKT manifolds constitute the right analogue of
Kähler manifolds in the hypercomplex world, cf. [V02, V09, GLV17]. This is partially due
to the rigidity of HK manifolds, we know only two deformation classes in each dimension
and two spontaneous examples due to O’Grady. One should note though that contrary to
the name HKT manifolds are not in general Kähler at all. As the result of Verbitsky [V05]
shows they can be Kähler only in the case when the manifold already admits HK metric.
Let us also remark that originally it was conjectured, cf. [V02], that any hypercomplex
manifold admits an HKT metric. This was disproved by Fino and Grantcharov in [FG04]
and another examples, even simply connected ones by Swann [Sw10], followed.

In this string of arguments we present the result proven by Banos and Swann [BS04]. It
generalizes the former partial results due to Poon and Swann [PS01] and due to Michelson
and Strominger [MS00]. It is an analog of the existence of local potentials in Kähler case.
In the form as below it was given in [AV06]. It will become handy when studying the
quaternionic Monge-Ampère operator for HKT metrics.

Proposition 7.1.6. Let (M, I, J,K) be a hypercomplex manifold and

Ω ∈ Λ2,0
I,R(M).

Locally, on M , the form Ω is given by

Ω = ∂∂Jf
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for some smooth real function f if and only if

∂Ω = 0.

Let us elaborate on HKT geometry a bit more as it will be required to discuss the
application of the quaternionic Monge-Ampère equation in hypercomplex geometry. In
the next paragraph we will sometimes make assumptions on the triviality of the canonical
bundle

K(M, I) := Λ2n,0
I (M)

of HKT manifolds. We would like to discuss how restrictive this requirement is. First of
all let us introduce the group Sln(H). From one point of view we could define Sln(H) ⊂
Gln(H) as these matrices which have the Dieudonné determinant equal to 1. Since we have
not introduced the Dieudonné determinant explicitly and this will be more natural for us,
it may be equivalently defined as the group of those automorphisms of Hn preserving the
canonical holomorphic volume form

dz0 ∧ ... ∧ dz2n−1.

Theorem 7.1.7. [Ob56] Suppose (M, I, J,K) is a hypercomplex manifold. There exists
a unique torsion free connection, denoted by ∇Ob, on M such that

∇ObI = ∇ObJ = ∇ObK = 0.

Remark 7.1.8. As we have mentioned in Section 3.2, in general it is not true that
a hypercomplex manifold locally looks like Hn, in the sense that there is no chart such
that all the complex structures I, J , K look like in Example 3.2.13. Such structures
were examined in [So75]. Existence of such trivializing charts is equivalent to the Obata
connection being flat. The coordinate expression for this connection can be found in the
mentioned paper by Obata himself [Ob56]. An invariant, global, formula can be found for
example in Gauduchon’s paper [G97b].

The first part of the following theorem is obvious from the definition of the group
Sln(H) while the second one is due to Verbitsky.

Theorem 7.1.9. [V07b] Suppose (M, I, J,K) is (for simplicity) a simply connected, hy-
percomplex manifold. Provided

Hol(∇Ob) ⊂ Sln(H) (III.7.2)

there exists a non-vanishing, I holomorphic, q-positive (2n, 0) form Θ, i.e.

Θ ∈ Λ2n,0
I,R ≥0

(M).

Partially conversely, if (M, I, J,K, g) is, in addition a compact HKT manifold, admitting
I holomorphic non-vanishing (2n, 0) form Θ then (III.7.2) holds.

We obtain from the above theorem that for a compact HKT manifold admitting non-
vanishing I holomorphic q-positive (2n, 0) form is equivalent to (III.7.2). Let us just
note here that it is not known if more generally the triviality of the canonical bundle is
equivalent to (III.7.2) for every compact hypercomplex manifold. This geometric situation
is also important from the point of view of the generalization of the Berger holonomy
theorem due to Merkulov and Schwachhöfer [MS99] for torsion free, not necessarily metric,
connections. The group Sln(H) is the one of a few additional families occurring in this
context. Hypercomplex manifolds satisfying (III.7.2) are called an Sln(H) manifolds.
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7.2 Quaternionic Monge-Ampère equation in HKT

geometry

We are ready to state the quaternionic version of the Calabi conjecture, as it was done
in [AV10]. Firstly note that on a given HKT manifold, of quaternionic dimension n, the
canonical bundle K(M, I) is trivial topologically, e.g. Ωn gives a smooth trivialization.
The natural question presents itself whether every section can be obtained that way?
The form Ωn itself is, by far, not always holomorphic. Actually, unlike in the Kähler
case where, up to the finite covering, topological triviality gives the holomorphic one,
here the canonical bundle is not holomorphically trivial in many cases, e.g. Hopf sur-
faces. Arguably, cf. [V09], HKT manifolds with holomorphically trivial canonical bundle
constitute a hypercomplex analogue of the Calabi–Yau manifolds. Alesker and Verbitsky
proposed the following strategy to attack this trivialization problem, at least when the
canonical bundle K(M, I) is trivial holomorphically. Using the first order differential op-
erator ∂J , introduced by Verbitsky in [V02], they suggested to look for an HKT metric
whose associated HKT form is

Ωφ := Ω + ∂∂Jφ

for some smooth real function φ and for which Ωn
φ is the section we want to obtain. If

such a φ exists then this new HKT metric gφ can be obtained form Ωφ by applying the
isomorphism from Proposition 3.2.22. This approach allowed them to reformulate the
described problem as a conjecture on the solvability of a certain PDE.

Conjecture 7.2.1. [AV10] Let (M, I, J,K, g) be a compact HKT manifold. Suppose there
exists a non-vanishing I holomorphic (2n, 0) form Θ on M . For every smooth function f
the quaternionic Monge-Ampère equation{

(Ω + ∂∂Jφ)n = eFΩn

Ω + ∂∂Jφ ≥ 0
(III.7.3)

has a unique, up to the constant, smooth solution provided the function f satisfies the
necessary condition ∫

M

(ef − 1)Ωn ∧Θ = 0.

The necessary normalizing condition on f follows from Stokes’ theorem giving∫
M

Ωn ∧Θ =

∫
M

Ωn
φ ∧Θ.

Note also that any non-vanishing, q-real (2n, 0) form, if positive, is necessarily of the form

efΩn

for some smooth f so in the conjecture above we truly take care of being able to obtain
any section possible.

The question arises, like in the case of the complex Monge-Ampère equation on her-
mitian manifolds, why to look for a metric whose associated HKT form is a ∂∂Jφ pertur-
bation of the original one. This does not follow from a simple requirement of belonging
to the de Rham class [Ω]dR since in general the global ∂∂J lemma is not true on an HKT
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manifold. It is true though for example for hyperKähler or, more generally, Sln(H) man-
ifolds, cf. [GLV17]. Being a ∂∂Jφ perturbation of Ω becomes necessary if one agrees to
look for solutions belonging to the class of Ω in a Bott-Chern type cohomology group

H2,0
BC(M) :=

{η ∈ Λ2,0
I (M) | ∂η = ∂Jη = 0}
∂∂JC∞(M)

discussed in [GLV17]. This approach is additionally motived by the local result, Propo-
sition 7.1.6, and the success of the similar naive approach in the case of some complex
equations on non-Kähler manifolds. There the global ∂∂ lemma fails in general, yet one
still looks for the ∂∂φ perturbations of the initial hermitian metric, cf. [TW10b, ChTW19].

Verbitsky argues in [V09] that HKT metrics giving the holomorphic trivialization
constitute the analogue of Calabi–Yau metrics in this setting. These metrics have the
property of being balanced with respect to any complex structure from SM . They also fit
in perfectly into the recently active stream of research on generalizations of Calabi-Yau
spaces, the so called torsion Calabi–Yau manifolds, cf. [T15, Pi19].

Another conjecture, stated explicitly in [AS17], is obtained by dropping the assumption
on the holomorphic triviality of the canonical bundle K(M, I). It becomes natural to pose
when comparing with the Calabi–Yau theorem [Y78], where you can solve the volume
prescription problem regardless of the holomorphic triviality of the bundle.

Conjecture 7.2.2. Let (M, I, J,K, g) be a compact HKT manifold. Given any q-positive,
i.e. of the form efΩn for a smooth function f , trivialization Θ of Λ2n,0

I M is there an HKT
metric g̃ such that the associated HKT form Ω̃ satisfies

Ω̃n = Θ?

Equivalently does every complex volume form come from an HKT metric?

Of course from the discussion we had so far one may argue that this will be confirmed
provided the following conjecture is true.

Conjecture 7.2.3. Let (M, I, J,K, g) be a compact HKT manifold. For every smooth
function f there exists exactly one real number b such that the quaternionic Monge-Ampère
equation

(Ω + ∂∂Jφ)n = e(f+b)Ωn

has a unique, up to the constant, smooth solution.

In the last conjecture the constant b has to appear, as for example in [TW10b], since
there is no easy way to give an a priori necessary integrability condition for f .

It may be interesting to observe that equation (III.7.3) and more generally the one
above encode questions of the type discussed in Section 3.1.1. It is not hard to note, from
Example 3.2.13, that for a hyperhermitian manifold (M, I, J,K, g) and the constant cn
depending only on the dimension

Ωn ∧ Ω
n

= cnω
2n
I .

Consequently we see that if the quaternionic Monge-Ampère equation above is solvable
for any f then

(ωI,gφ)2n =
1

c n
(Ω + ∂∂Jφ)n ∧ (Ω + ∂∂Jφ)n =

1

c n
e(2f+2b)Ωn ∧ Ω

n
= eF+Cω2n

I
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is satisfied with suitable φ and C for any F . Recalling the discussion curried out in Section
3.1.1 this means that any representative of cBC1 (M, I) can be obtained as the Chern-Ricci
curvature of an HKT metric gφ. This was noted already in [Ma11] for what Madsen calls
the projected Chern form, cf. Section 7.1.3 in [Ma11].

In light of the success of generalizing the results from Kähler to even almost hermitian
case in complex geometry, cf. [ChTW19], one could pose the following conjecture.

Conjecture 7.2.4. Let (M, I, J,K, g) be a compact hyperhermitian manifold. For every
smooth function f there exists exactly one real number b such that the quaternionic Monge-
Ampère equation

(Ω + ∂∂Jφ)n = e(f+b)Ωn

has a unique, up to the constant, smooth solution.

To sum up we see that solving equation (III.7.3) under possibly most general as-
sumptions is of crucial importance for answering quite naturally posed problems on HKT
metrics.

7.3 Advances towards the proof

Let us now give an overview of the advances towards proving the conjectures stated in the
proceeding section. The strategy is to use the so called continuity method. This reduces
to exchanging equation (III.7.3) for a one parameter family of equations. This is obtained
by perturbing the right hand side in a way which connects the desired right hand side
with the one for which we know the solution exists, for example when the function f is
constant. It is known that, in our case cf. [AV10, Ma11, A13], for this method to work the
only issue is to obtain the so called a priori estimates. Those are estimates for the solution
which depend only on the bound on the right hand sides of the equations in our family and
the geometric quantities related to the hyperhermitian structure. This is so because with
their aid we seek to show that the set of parameters for which we can solve the equations
is closed. The openness of this set is much simpler in our setting and follows from the
standard argument involving the implicit function theorem for suitably chosen Banach
spaces and the operator between them. Consequently, choosing the family of equations
in such a way that at least one of them is solvable shows that our original equation can
be solved as well. Though this sounds elementary the struggle with obtaining the a priori
estimates is severe. Due to the general theory of PDEs it is known that, by the Schauder
estimates cf. [GT01], it is enough to obtain the C2,α estimate for some α ∈ (0, 1). We
now give the account of the results obtained towards that goal.

It is possible to obtain the C0 estimate under the assumption of the existence of the
holomorphic Θ, as in the section above, by repeating the Moser iteration method used by
Yau in [Y78]. This was done by Alesker and Verbitsky in [AV10]. In [AS13] this bound was
shown to hold when the hypercomplex structure is locally flat by using the local method
of B locki from [B11]. Under a stronger assumption that the HKT manifold admits a flat
hyperKähler metric Conjecture 7.2.1 was confirmed by Alesker in [A13]. The assumption
that the hyperKähler metric is flat, in the sense that the full Riemann curvature tensor
vanishes, implies in particular that the hypercomplex structure is flat, as in this case the
Obata connection coincides with the Levi-Civita one. Actually, the manifold is then a
finite cover of a torus by Bieberbach’s theorem on compact, flat Riemannian manifolds.
Nevertheless under such an assumption Alesker proved the Laplacian bound and the
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analogue of the Evans-Krylov theorem, cf. [E82, T83]. This ensures the C2,α bound since
by this Evans-Krylov type theorem when the Laplacian of the solution is bounded then its
C2,α norm is automatically bounded as well. For the last theorem Alesker uses only the
local flatness of the hypercomplex structure while for the Laplacian bound the existence
of a flat HK metric was used.

Going to the general case, i.e. to the situation from Conjecture 7.2.3, only the C0

bound is known. It was firstly obtained in [AS17]. Alesker and Shelukhin provided
the proof of this estimate following the scheme of [B11]. It turned out though that
the proof of one technical fact needed for the reasoning, Theorem 3.2.2 in [AS17], is
surprisingly complicated and occupies a central part of that paper. What is more, their
reasoning is based on the Douady space theory, Baston and Penrose transforms. All of
these are completely different tools from the one usually applied in this kind of problems,
cf. [Y78, TW10a, TW10b, ChTW19]. When it comes to the higher order estimates
nothing is known. The difficulties come from the facts that the local situation on an HKT
manifold does not correspond to the one in Hn due to a generic hypercomplex structure
not being flat. More importantly, a big number of terms coming from differentiating
quantities, usually used in arguments involving the maximum principle, with respect to
the complex coordinates appears.

Motivated by this we give another, in our opinion simpler, proof of the C0 estimate for
this equation, in the next section. There are couple of features we wish to underline here.
First of all, as we mentioned, our proof seems to be at least much shorter then the one
from [AS17] which is nearly 50 pages long. Moreover we improve the estimate in the sense
that the dependence of the bound from [AS17] on the right hand side is much weakened.
We give an estimate which depends merely on the Lp norm of the right hand side for the
suitable p. What is more, our methods are based on the geometric analytic techniques
which seems to promise some success in obtaining also the higher order bounds in the
general situation in the future.
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Chapter 8

C0 estimate

Theorem 8.1. [Sr19] Let (Mn, I, J,K, g) be a compact HKT manifold and F ∈ C∞(M).
There exists a constant C depending only on the HKT structure, q > 2n and

‖ eF ‖Lq ,

such that for any smooth solution φ of the quaternionic Monge-Ampère equation
(Ω + ∂∂Jφ)n = eFΩn

Ω + ∂∂Jφ ≥ 0

sup
M

φ = 0
(III.8.1)

the following estimate holds
‖ φ ‖L∞≤ C.

We see that C depends in particular only on

‖ eF ‖L∞

and this in turn depends only on supM F .

The proof of this theorem is strongly motivated by the reasoning performed in [TW10b]
which is a refined version of the one described in [TW10a]. This in turn is based on an
inequality obtained originally by Cherrier in [Ch87]. The method emerged in the course of
proving the C0 estimate for the complex Monge-Ampère equation on a compact hermitian,
implicitly non-Kähler, manifold. The general strategy we take is as follows.

Firstly, in section 8.1, we prove the Cherrier type inequality – Lemma 8.1.1, cf. (22)
in [Ch87] or Lemma 2.1 in [TW10b], for the assumed solution of (III.8.1). This is a
cornerstone of the reasoning. Then, in Section 8.2, using the Moser iteration method we
obtain a special bound on infM φ, Lemma 8.2.1, but still not the desired estimate since
the right hand side depends on φ. From purely measure theoretic reasons this shows that
the values of φ are separated from infM φ by a positive constant, independent of φ as
it turns out, on a set of a positive, independent of φ, measure, see Lemma 8.2.2. From
this one can see the uniform bound follows easily provided we have at least an L1 a priori
estimate for which we refer to [AS13] where it was proven via the bounded Green function
argument. We would like to point out that one can hope to try to adjust our argument
also to the hyperhermitian not HKT case but this will certainly require some work. This
is due to the fact that in this case in the formula (III.8.2) more bad terms will appear
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due to the fact that ∂α will not be zero necessarily and the whole argument will have to
be adjusted accordingly.

In this chapter all the Lq norms are taken with respect to the volume element
(
Ω ∧ Ω

)n
.

When we want to emphasize on what quantities the constant depends we put those in the
brackets, e.g. C(n, ‖ f ‖L1).

8.1 Cherrier type inequality

Lemma 8.1.1. There exist positive constants C and p0 both depending on the HKT
geometry of the manifold, q > 2n and

‖ eF ‖Lq

such that for: any solution φ of (III.8.1), r being Hölder’s conjugate of q and any p ≥ p0∫
M

|∇e−
p
2
φ|2g
(
Ω ∧ Ω

)n ≤ Cp ‖ e−φ ‖pLpr .

Proof of Lemma 8.1.1. Let us define

Ωφ = Ω + ∂∂Jφ,

α =
n−1∑
k=0

Ωk
φ ∧ Ωn−1−k,

∂
(
Ωn
)

= β ∧ Ωn for some (1, 0) form β.

Using the Stokes theorem we obtain that for any p > 0 and fixed q > 2n

C
(
‖ eF ‖Lq

)
‖ e−φ ‖pLpr≥

∫
M

e−pφ(eF − 1)Ωn ∧ Ωn

=

∫
M

e−pφ(Ωn
φ − Ωn) ∧ Ωn =

∫
M

e−pφ∂∂Jφ ∧ α ∧ Ωn

= p

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn +

∫
M

e−pφ∂Jφ ∧ β ∧ α ∧ Ωn.

(III.8.2)

First inequality above is the Hölder inequality and in the integration by parts we have
used ∂α = 0.

Our goal is to estimate the second factor on the right hand side of (III.8.2) which we
reduce to finding a uniform pointwise bound on

∂Jφ ∧ β ∧ α ∧ Ωn. (III.8.3)

This follows from the analogue of the inequality (2.2) in [TW10b], as in the lemma below.

Lemma 8.1.2. There exists a positive constant B, depending on β, such that∣∣∣∣∣∂Jφ ∧ β ∧ Ωk
φ ∧ Ωn−1−k

Ωn

∣∣∣∣∣ ≤ B

ε

∂φ ∧ ∂Jφ ∧ Ωk
φ ∧ Ωn−1−k

Ωn
+Bε

Ωk
φ ∧ Ωn−k

Ωn
(III.8.4)

for any ε > 0 and k ∈ {0, ..., n− 1}.
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Proof of Lemma 8.1.2. Let us note that, like in the complex case, one is able to simulta-
neously diagonalize, in a certain sense, both Ω and Ωφ. Precisely we claim that for each
x ∈M there exists a basis of T 1,0

x M , decomposition with respect to I, of the form

e1, (e1)J, ..., en, (en)J

such that

Ω(ei, ej) = Ωφ(ei, ej) = Ω (ei, (ej)J) = Ωφ (ei, (ej)J) = 0 for i 6= j.

This follows from Lemma 8.1.3 below by taking Ω1 = Ω and Ω2 = Ωφ.

Lemma 8.1.3. Let Ω1 be a strictly positive (2, 0) form, i.e.

Ω1(z, zJ) > 0

for any non zero (1, 0) vector z, and Ω2 a q-real (2, 0) form on M . For each x ∈M there
exists a basis

e1, (e1)J, ..., en, (en)J

of T 1,0
x M such that

Ω1(ei, ej) = Ω2(ei, ej) = Ω1 (ei, (ej)J) = Ω2 (ei, (ej)J) = 0 for i 6= j. (III.8.5)

Proof of Lemma 8.1.3. Fix x ∈M .
Take an orthonormal basis for Ω1 like in Example 3.2.13, i.e. the basis

v1, (v1)J, ..., vn, (vn)J

such that (III.8.5) is satisfied for Ω1 and in addition

Ω1(vi, viJ) = 1 for 1 ≤ i ≤ n.

With its aid one is able to check that the endomorphism

Ω̃2 : T 1,0
x M −→ T 1,0

x M

defined by the relation

Ω2(v, ·) = Ω1

(
Ω̃2(v), ·

)
is actually well defined since

Ω̃2(v) =
∑

1≤i≤n

(Ω2(v, viJ)vi − Ω2(v, vi)viJ) .

We prove by induction that for any 1 ≤ k ≤ n there exist linearly independent vectors

e1, (e1)J, ..., ek, (ek)J

and complex numbers
λ1, ..., λk

such that (III.8.5) is satisfied and

Ω̃2(ei) = λiei for any 1 ≤ i ≤ k.
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For k = 1 take any eigenvector e1 for Ω̃2, it is linearly independent of e1J and (III.8.5)
is trivially satisfied.

Assume that the claim holds for a fixed 1 ≤ k < n and take a set of vectors like in the
statement for k. Let us note that for any u, v ∈ T 1,0

x M , using only the q-reality of Ω1, Ω2

and the definition of Ω̃2, we obtain

Ω2(vJ, u) = −Ω2

(
vJ,
(
uJ
)
J
)

= −(JΩ2)(v, uJ) = −Ω2(v, uJ) = −Ω2(v, uJ) =

−Ω1(Ω̃2(v), uJ) = −Ω1

(
Ω̃2(v), uJ

)
= −(JΩ1)

(
Ω̃2(v), uJ

)
= −Ω1

(
Ω̃2(v)J, uJJ

)
=

Ω1

(
Ω̃2(v)J, u

)
thus proving that

Ω̃2(vJ) = Ω̃2(v)J for any v ∈ T 1,0
x M .

Since
Ω̃2(ei) = λiei,

by the above,
Ω̃2(eiJ) = λi (eiJ)

for 1 ≤ i ≤ k. Consequently

ker Ω1(ei, ·) ⊂ ker Ω2(ei, ·) and ker Ω1(eiJ, ·) ⊂ ker Ω2(eiJ, ·) for 1 ≤ i ≤ k.

We introduce the following subspaces of T 1,0
x M

V = span{e1, (e1)J, ..., ek, (ek)J},
V ′ = ker Ω1(e1, ·) ∩ ker Ω1 ((e1)J, ·) ∩ ... ∩ ker Ω1(ek, ·) ∩ ker Ω1 ((ek)J, ·),
V ′′ = ker Ω2(e1, ·) ∩ ker Ω2 ((e1)J, ·) ∩ ... ∩ ker Ω2(ek, ·) ∩ ker Ω2 ((ek)J, ·).

Note that
T 1,0
x M = V ⊕ V ′

because

V ∩ V ′ = ∅ and dimCV
′ ≥ 2n− 2k.

Let us also observe that
Ω̃2|V ′ : V ′ −→ V ′

since for v ∈ V ′, by definition, Ω̃2(v) is such that

Ω2(v, ·) = Ω1

(
Ω̃2(v), ·

)
and V ′ ⊂ V ′′. Take ek+1 to be any eigenvector for Ω̃2|V ′ . Since ek+1 ∈ V ′ and Ω1 is q-real
also (ek+1)J ∈ V ′. Finally due to the inclusion V ′ ⊂ V ′′ the linearly independent vectors

e1, (e1)J, ..., ek+1, (ek+1)J

satisfy (III.8.5) and thus all the required properties of the claim for k + 1.

Remark 8.1.4. In the setting under consideration this result simply states that given
two hyperhermitian metrics one is able to trivialize one and diagonalize the other in the
quaternionic basis. A similar statement, Proposition 3.2, is contained in [V10a] and
justified by saying that it follows from ”a standard argument which gives simultaneous
digitalization of two pseudo-Hermitian forms”. We note that at least one of Ω1 or Ω2 has
to be positive.
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After normalization of ei’s we may assume that, at the point,

Ω = e∗1 ∧ J−1
(
e∗1
)

+ ...+ e∗n ∧ J−1 (e∗n) ,

Ωφ = φ1e
∗
1 ∧ J−1

(
e∗1
)

+ ...+ φne
∗
n ∧ J−1 (e∗n) for some φi ≥ 0.

Let us decompose

β =
n∑
i=1

b2i−1e
∗
i + b2iJ

−1(e∗i ),

∂φ =
n∑
i=1

a2i−1e
∗
i + a2iJ

−1(e∗i ),

then

∂Jφ = J−1(∂φ) = J−1
(
∂φ
)

=
n∑
i=1

−a2ie
∗
i + a2i−1J

−1(e∗i ).

Since bi’s are the coefficients of β in a unitary basis they are uniformly bounded by |β|g.
One easily checks the equalities

Ωk
φ ∧ Ωn−k =

k!(n− k)!

n!

∑
1≤i1<...<ik≤n

φi1 ...φikΩ
n,

∂φ ∧ ∂Jφ ∧ Ωk
φ ∧ Ωn−(k+1)

=
k!(n− k − 1)!

n!

∑
1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

|a2j−1|2 + |a2j|2
φi1 ...φikΩ

n,

∂Jφ ∧ β ∧ Ωk
φ ∧ Ωn−(k+1)

=
k!(n− k − 1)!

n!

∑
1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

−a2jb2j − a2j−1b2j−1

φi1 ...φikΩ
n.

Thus we see that it is enough to prove that there exists B such that for any 0 ≤ k < n
and ε > 0∑

1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

|a2j||b2j|+ |a2j−1||b2j−1|

φi1 ...φik

≤ Bε(n− k)
∑

1≤i1<...<ik≤n

φi1 ...φik +
B

ε

∑
1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

|a2j−1|2 + |a2j|2
φi1 ...φik .

We have the string of inequalities following from the bound on bi’s and the AM–GM
inequality

∑
1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

|a2j||b2j|+ |a2j−1||b2j−1|

φi1 ...φik

≤ |β|g
∑

1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

|a2j|φi1 ...φik + |a2j−1|φi1 ...φik


≤ |β|g

2

∑
1≤i1<...<ik≤n

 ∑
j 6∈{i1,...,ik}

2εφi1 ...φik +
|a2j|2φi1 ...φik + |a2j−1|2φi1 ...φik

ε
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so we get that taking B = |β|g will do.

Having Lemma 8.1.2 established we are ready to deal with the term involving

∂Jφ ∧ β ∧ α ∧ Ωn

in the inequality (III.8.2).

Lemma 8.1.5. There exist positive constants C1, ..., Cn, ε1, ..., εn depending on the quan-
tities listed in Lemma 8.1.1 such that

p

2i

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn ≤ Ci ‖ e−φ ‖pLpr +εCi

n−i∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn (III.8.6)

for all i ∈ {1, ..., n}, ε ∈ (0, εi] and p ≥ pi(ε) a positive number depending on ε and i.

Proof of Lemma 8.1.5. We show the claim by induction for a fixed q > 2n.

For the case i = 1 let us note that from (III.8.4) there exists a uniform positive
constant B such that for any ε > 0 and p > 0

−
∫
M

e−pφ∂Jφ ∧ β ∧ α ∧ Ωn = −
n−1∑
k=0

∫
M

e−pφ∂Jφ ∧ β ∧ Ωk
φ ∧ Ωn−1−k ∧ Ωn

≤
n−1∑
k=0

B
ε

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk
φ ∧ Ωn−1−k ∧ Ωn +Bε

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn

 .

We set ε1 = 1, then, by above, for any ε ≤ ε1 and p ≥ p1(ε) := 2B
ε

−
∫
M

e−pφ∂Jφ ∧ β ∧ α ∧ Ωn

≤ p

2

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn +B

∫
M

e−pφΩn ∧ Ωn + εB

n−1∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn.

This in turn, coupled with the inequality (III.8.2) and Hölder’s inequality, gives

p

2

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn ≤ C1 ‖ e−φ ‖pLpr +εC1

n−1∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn

proving the claim for i = 1.

For the inductive step suppose the claim holds for some fixed 1 ≤ i < n. To prove
(III.8.6) for i + 1 we note that the LHS of (III.8.6) for i is twice the LHS of (III.8.6) for
i + 1. Consequently it is enough to estimate the RHS of (III.8.6) for i by the LHS of
(III.8.6) for i + 1 and the terms appearing on the RHS of (III.8.6) for i + 1. Note that
since

Ωφ = Ω + ∂∂Jφ

89

89:5524795896



we get

εCi

n−i∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn

= εCi

n−i∑
k=1

∫
M

e−pφΩk−1
φ ∧ Ωn−(k−1) ∧ Ωn

+ εCi

n−i∑
k=1

∫
M

e−pφ∂∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn,

(III.8.7)

because of the form of the RHS of (III.8.6) for i+ 1 we only need to estimate the second
summand. Applying Stokes’ theorem and the fact that

∂Ωn = β ∧ Ωn

gives

εCi

n−i∑
k=1

∫
M

e−pφ∂∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

= εpCi

n−i∑
k=1

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

+ εCi

n−i∑
k=1

∫
M

e−pφ∂Jφ ∧ β ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn.

(III.8.8)

Below we bound both these summands. Let us set εi+1 to be such that

εi+1 ≤ min{ 1

Ci2i+2
, εi, 1}

then for any ε ∈ (0, εi+1] and p ≥ pi(ε)

εpCi

n−i∑
k=1

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

≤ p

2i+2

n∑
k=1

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

=
p

2i+2

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn.

(III.8.9)

For any ε ∈ (0, εi+1] we set pi+1(ε) to be such that

pi+1(ε) ≥ max{pi(ε), 2i+2BCi}
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because then, again using firstly (III.8.4), for p ≥ pi+1(ε)

εCi

n−i∑
k=1

∫
M

e−pφ∂Jφ ∧ β ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

≤ εCi

n−i∑
k=1

B

ε

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

+ εCi

n−i∑
k=1

Bε

∫
M

e−pφΩk−1
φ ∧ Ωn−(k−1) ∧ Ωn ≤ p

2i+2

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn

+ CiB

∫
M

e−pφΩn ∧ Ωn + εCiB

n−(i+1)∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn.

(III.8.10)

Note that for ε ∈ (0, εi+1] and p ≥ pi+1(ε), from (III.8.6),

2
p

2i+1

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn ≤ Ci ‖ e−φ ‖pLpr +εCi

n−i∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn.

By (III.8.7) the RHS of the above inequality equals to

Ci ‖ e−φ ‖pLpr +εCi

n−i∑
k=1

∫
M

e−pφΩk−1
φ ∧Ωn−(k−1)∧Ωn+εCi

n−i∑
k=1

∫
M

e−pφ∂∂Jφ∧Ωk−1
φ ∧Ωn−k∧Ωn.

Then by rewriting the second summand and applying (III.8.8) for the last one the above
expression becomes

Ci ‖ e−φ ‖pLpr +εCi

∫
M

e−pφΩn ∧ Ωn + εCi

n−(i+1)∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn

+ εpCi

n−i∑
k=1

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn

+ εCi

n−i∑
k=1

∫
M

e−pφ∂Jφ ∧ β ∧ Ωk−1
φ ∧ Ωn−k ∧ Ωn.

Applying (III.8.9) for the last but one summand, (III.8.10) for the last one and Hölder’s
inequality to bound

‖ e−φ ‖pLp by ‖ e−φ ‖pLpr
shows that this quantity is estimated by

Ci+1 ‖ e−φ ‖pLpr +εCi+1

n−(i+1)∑
k=1

∫
M

e−pφΩk
φ ∧ Ωn−k ∧ Ωn + 2

p

2i+2

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn,

for a constant Ci+1 depending on B and Ci. We obtain (III.8.6) for i+ 1 and this finishes
the proof of the inductive step.
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The proof of the main result, the Cherrier type inequality, is now finished by taking
for a given q > 2n in Lemma 8.1.5, i = n, ε = εn and p0 = pn(εn) because then for any
p ≥ p0 ∫

M

|∇e−
p
2
φ|2g
(
Ω ∧ Ω

)n
= n

∫
M

∂e−
p
2
φ ∧ ∂Je−

p
2
φ ∧ Ωn−1 ∧ Ωn =

np2

4

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ Ωn−1 ∧ Ωn

≤ pC

 p

2n

∫
M

e−pφ∂φ ∧ ∂Jφ ∧ α ∧ Ωn

 ≤ pC ‖ e−φ ‖pLpr .

8.2 Proof of Theorem 8.1

Lemma 8.2.1. There exist positive constants C and s0, depending on the quantities listed
in Lemma 8.1.1, such that for any solution of (III.8.1)

e
−s0 inf

M
φ ≤ eC

∫
M

e−s0φ
(
Ω ∧ Ω

)n
.

Proof of Lemma 8.2.1. From the Sobolev inequality for (M, g), cf. [A82], the fact that
Ωn∧Ωn is uniformly comparable with the Riemannian volume element, Lemma 8.1.1 and
the Hölder inequality we obtain∫

M

e−pφγΩn ∧ Ωn

 1
γ

≤ C

∫
M

|∇e−
p
2
φ|2gΩn ∧ Ωn +

∫
M

e−pφΩn ∧ Ωn

 ≤ pC ‖ e−φ ‖pLpr

for

r < γ :=
2n

2n− 1

the Hölder conjugate of q, a uniform constant C and any p ≥ p0. This is equivalent to

‖ e−φ ‖
L(p

γ
r )r=‖ e−φ ‖Lpγ≤ (pC)

1
p ‖ e−φ ‖Lpr .

The iteration of the last inequality for

p0, p0
γ

r
, p0

(γ
r

)2

,

and so on gives
sup
M

e−φ ≤ C ‖ e−φ ‖Lp0r

hence we can take s0 := p0r since then

e
−s0 inf

M
φ ≤ C

∫
M

e−s0φΩn ∧ Ωn.
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Lemma 8.2.2. [TW10a] There exist positive constants C1 and C2 such that for any
solution of (III.8.1) ∫

{φ≤inf
M
φ+C1}

(
Ω ∧ Ω

)n ≥ C2.

Proof of Lemma 8.2.2. Having Lemma 8.2.1, the proof is exactly as in [TW10a]. The
normalization of the volume element they use is purely for computational convenience.

Proof of Theorem 8.1. As it has been said in order to finish the proof one needs at least
an L1 bound on φ. This estimate was shown in Proposition 2.3 in [AS13]. The proof is
now finished by noting that either

inf
M
φ+ C1 ≥ 0 giving − inf

M
φ ≤ C1

or

C3 ≥ ‖ φ ‖L1≥
∫

{φ≤inf
M
φ+C1}

|φ|
(
Ω ∧ Ω

)n ≥ C2

(
− inf

M
φ− C1

)
.

This gives a uniform constant

C = max{C1,
C3

C2

+ C1} =
C3

C2

+ C1

for which
− inf

M
φ ≤ C.
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